Asymmetric DQN for Partially Observable Reinforcement Learning

Problem Statement

e Many control problems are partially observable (PO),
the agent acts without knowing the environment state s,
and must rely on past observations, a.k.a., the history h.

e ‘Training in simulation provides access to the simulation state.

e Actor-Critic methods exploit state information via asymmetry.

(): Can value-based methods also use state information?
Can we develop deep algorithms that use state information?
A: Yes, through the theory of asymmetric value-based control.

Contributions

e Theory of asymmetric value-based PO control methods.

e Asymmetric value-based algorithms with focus on correctness:
Asymmetric Policy Iteration, Asymmetric Action-Value Iteration,
Asymmetric Q-Learning, Asymmetric DQN.

e [valuation in environments with significant partial observability:.

Motivation and Background

Partially Observable Control (PO Control)

e PO tasks require information gathering and memorization of past.
e Agent relies on good representation of history ¢(h), hard to learn.

o Good ¢(h) extracts key events and filters the rest, but ...
.. identitying key events is like finding a needle in a haystack ...
.. while learning to recognize needles and haystacks ...
.. without supervision.
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Figure: A vicious Actor-Critic cycle.

Offline Training and Online Execution (OTOE)

e Agent trains offline in simulation, executes online.

e Offline training algorithms can access environment state ...

... which can be used via asymmetry |1, 2|, e.g.,

Unbiased Asymmetric Actor-Critic [2] trains «(h) using V (h, s).
e Representation of state ¢(s) is easier to learn than ¢(h) ...

.. which helps learn a better critic V(h, s) ...

... bootstrap a better ¢(h) ...

... leading to a better policy m(h).
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Figure: A better Asymmetric Actor-Critic cycle.
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Asymmetric Value-Based PORL

Introducing Asymmetry into Value-Based PORL

e Actor-Critic methods implement asymmetry via w(h) and V(h, ).

e Value-Based methods employ a single model Q(h, a).
= We implement asymmetry via U(h, s, a).

Asymmetric Policy Iteration (API)

From arbitrary Uy, )y, and 7, generate the sequence U}, ()., and 7,
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API is the simplest asymmetric method, analogous to Policy Iteration [3].
Why API?

& Demonstrates state can be used in value-based solution method.
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@ Serves as a basis for the other algorithms.

Limitations
© Requires POMDP model and expectations.

© Requires multiple iterations to approximate limit.
© Applicable to finite POMDPs only.

© Requires more computation than PI to achieve the same result.

Asymmetric Action-Value Iteration (AAVT)

From arbitrary Uy and @)y, generate the sequence U} and @)y,
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AAVTI is an eager variant of API, analogous to Value Iteration |3]).
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Improvements
® Removes limit in U-evaluation step.

@ Removes need for explicit policy representation.

Asymmetric Q-Learning (AQL)

We introduce incremental stochastic updates based on sample transitions. From
arbitrary ()g = FU,, generate the sequence U and @y,

Up+1 < (1 — ap)Us + ap(Bygn Ui + wi) , (
Qi1 — (1 — Ozk)Qk + Ozk(EBg@k)Uk + Uk) . (

AQL uses sample experience, analogous to Q-learning [3].
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Improvements
@ Removes need for POMDP model and expectations.

Asymmetric DQN (ADQN)

We introduce value function approximation and reformulate the tabular update
rules as squared-error losses on deep parametric models,
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Ly = 5 (7“ +~vU(hao, s', argmax Q(hao, a’)) — U(h, s. a)) , (8)
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Lo= 5 <T +~U(hao, s', argmax Q(hao, a’)) — Q(h, a)) . (9)

ADQN is a deep learning algorithm, analogous to DQN [4].

Improvements
@ Applicable to POMDPs with high-dimensional states/observations.

Evaluation

= DQN ADQN === ADQN-VR == ADQN-State = ADQN-State-VR
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Figure: Episodic returns averaged over last 100 completed episodes, statistics computed over 5
independent runs. Shaded areas represent one standard error around the mean.
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