Asymmetric DQN for Partially Observable Reinforcement Learning

Problem Statement

- Many control problems are **partially observable** (PO), the agent acts without knowing the environment state s, and must rely on past observations, a.k.a., the history h.
- Training in simulation provides access to the simulation state.
- Actor-Critic methods exploit state information via **<u>asymmetry</u>**.

Q: Can value-based methods also use state information? Can we develop deep algorithms that use state information?

A: Yes, through the theory of **asymmetric** value-based control.

Contributions

- Theory of **asymmetric** value-based PO control methods.
- Asymmetric value-based algorithms with focus on correctness: Asymmetric Policy Iteration, Asymmetric Action-Value Iteration, Asymmetric Q-Learning, **Asymmetric DQN**.
- Evaluation in environments with **<u>significant</u>** partial observability.

Motivation and Background

Partially Observable Control (PO Control)

- PO tasks require information gathering and memorization of past.
- Agent relies on good representation of history $\phi(h)$, <u>hard</u> to learn.
- Good $\phi(h)$ extracts key events and filters the rest, but ...
- ... identifying key events is like finding a needle in a haystack ...
- ... while learning to recognize needles and haystacks ...
- ... without supervision.

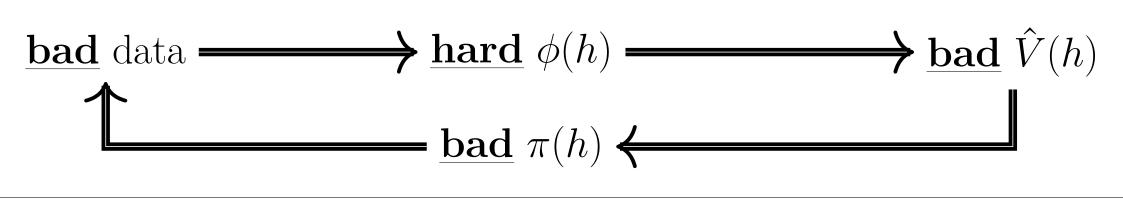


Figure: A vicious Actor-Critic cycle.

Offline Training and Online Execution (OTOE)

- Agent trains <u>offline</u> in simulation, executes **online**.
- Offline training algorithms can access environment state which can be used via <u>**asymmetry**</u> [1, 2], e.g., Unbiased Asymmetric Actor-Critic [2] trains $\pi(h)$ using V(h, s).
- Representation of state $\phi(s)$ is **<u>easier</u>** to learn than $\phi(h)$ which helps learn a better critic V(h, s) ...
 - ... bootstrap a better $\phi(h)$...
 - ... leading to a better policy $\pi(h)$.

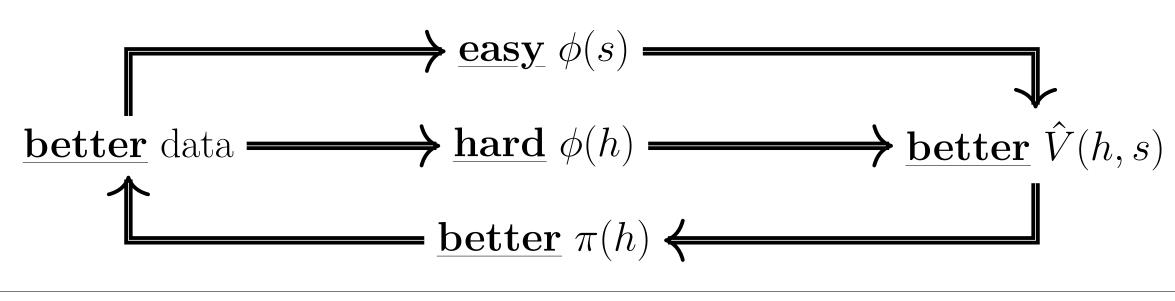


Figure: A better Asymmetric Actor-Critic cycle.

Andrea Baisero Brett Daley Christopher Amato {baisero.a,daley.br,c.amato}@northeastern.edu Khoury College of Computer Sciences, Northeastern University, Boston, USA

Asymmetric Value-Based PORL

Introducing Asymmetry into Value-Based PORL

- Actor-Critic methods implement asymmetry via $\pi(h)$ and $\hat{V}(h, s)$.
- Value-Based methods employ a single model $\hat{Q}(h, a)$.
- \Rightarrow We implement asymmetry via U(h, s, a).

Asymmetric Policy Iteration (API)

From arbitrary U_0 , Q_0 , and π_0 , generate the sequ

$$U_{k+1} \leftarrow \lim_{n \to \infty} B^n_{\pi_k} U_k$$
$$Q_{k+1} \leftarrow EU_{k+1},$$
$$\pi_{k+1} \leftarrow g(Q_{k+1}).$$

API is the simplest asymmetric method, analogous to Policy Iteration |3|.

Why API?

 \checkmark Demonstrates state can be used in value-based solution method. \checkmark Serves as a basis for the other algorithms.

Limitations

- **8** Requires POMDP model and expectations.
- **8** Requires multiple iterations to approximate limit.
- Solution Applicable to finite POMDPs only.
- **S** Requires more computation than PI to achieve the same result.

Asymmetric Action-Value Iteration (AAVI)

From arbitrary U_0 and Q_0 , generate the sequence

- $U_{k+1} \leftarrow B_{q(Q_k)} U_k$, (U-evaluat: $Q_{k+1} \leftarrow EU_{k+1}$.
 - (Q-evaluat)

AAVI is an eager variant of API, analogous to Va

Improvements

- \checkmark Removes limit in U-evaluation step.
- \checkmark Removes need for explicit policy representation.

Asymmetric Q-Learning (AQL)

We introduce incremental stochastic updates base arbitrary $Q_0 = EU_0$, generate the sequence U_k and

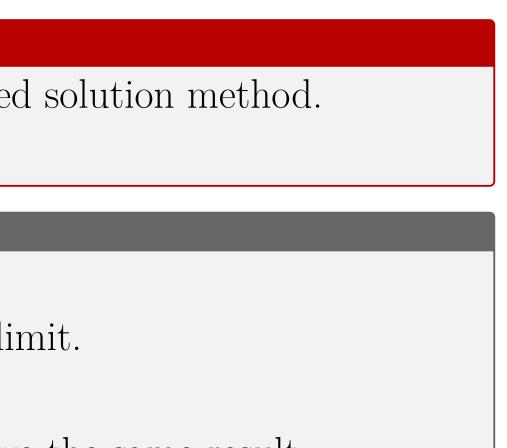
$$U_{k+1} \leftarrow (1 - \alpha_k)U_k + \alpha_k (B_{g(Q_k)})Q_{k+1} \leftarrow (1 - \alpha_k)Q_k + \alpha_k (EB_g)Q_k$$

AQL uses sample experience, analogous to Q-learning [3].

Improvements

 \heartsuit Removes need for POMDP model and expectations.

uence U_k , Q_k , and π_k ,	
(U-evaluation)	(1)
(Q-evaluation)	(2)
(improvement)	(3)
and to Dolion Itomation [9]	



the U_k and Q_k ,	
tion + improvement)	(4)
tion)	(5)
Value Iteration [3]).	

ed on sample transitions.	From
and Q_k ,	

$_{k)}U_{k}+w_{k}),$	(6)
$U_{Q_k)}U_k+v_k)$.	(7)
. [0]	

Asymmetric DQN (ADQN)

We introduce value function approximation and reformulate the tabular update rules as squared-error losses on deep parametric models,

$$\mathcal{L}_{\hat{U}} = \frac{1}{2} \left(r + \gamma \hat{U}(hao, s', \operatorname*{argmax}_{a'} \hat{Q}(hao, a')) - \hat{U}(h, s, a) \right)^2, \quad (8)$$
$$\mathcal{L}_{\hat{Q}} = \frac{1}{2} \left(r + \gamma \hat{U}(hao, s', \operatorname*{argmax}_{a'} \hat{Q}(hao, a')) - \hat{Q}(h, a) \right)^2. \quad (9)$$

ADQN is a deep learning algorithm, analogous to DQN [4].

Improvements

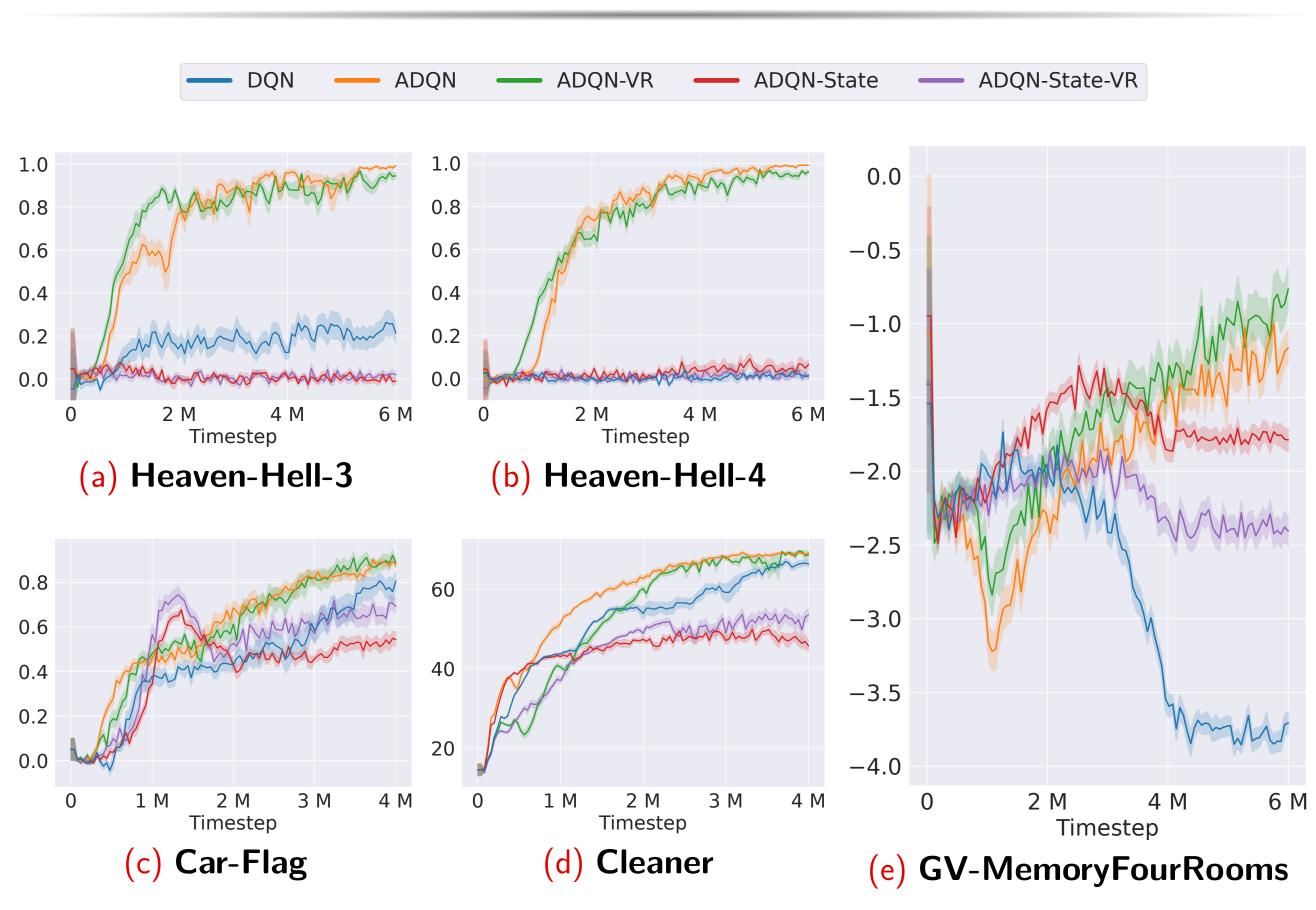


Figure: Episodic returns averaged over last 100 completed episodes, statistics computed over 5 independent runs. Shaded areas represent one standard error around the mean.

- 2018.
- Multiagent Systems, 2022.
- 2018.
- 7540, p. 529, 2015.

 \checkmark Applicable to POMDPs with high-dimensional states/observations.

Evaluation

References

[1] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, "Asymmetric actor critic for image-based robot learning," in Proceedings of Robotics: Science and Systems,

[2] A. Baisero and C. Amato, "Unbiased asymmetric reinforcement learning under partial observability," in Proceedings of the Conference on Autonomous Agents and

[3] R. S. Sutton and A. G. Barto, *Reinforcement learning: An introduction*. MIT press,

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, no.