Estimating causal effect of ads in a real-time bidding platform – Prasad Chalasani – 9.26.16

Date: Monday, September 26, 2016
Time: 12:00pm – 1:00 pm
Location: 366 West Village H
Host: Ravi Sundaram

Abstract

A real-time bidding platform responds to incoming ad-opportunities (“bid requests”) by deciding whether or not to submit a bid and how much to bid. If the submitted bid wins, the user is shown an ad. Advertisers hope that ad-exposure leads to an increased likelihood of a desired action, such as a click or conversion (purchase, etc). So an important quantity that advertisers want to measure is the causal effect of advertising, namely, what is the response probability of an exposed user, compared with the counterfactual (un-observable) response-rate of the user if they were not exposed to the ad. In an ideal randomized test, the user is randomly assigned to test or control AFTER the submitted bid is won, and test users are served the ad in the normal way, while control users are not. While this is ideal from a statistical perspective, in practice this approach has the drawback that money spent by advertisers is wasted when a user is assigned to control. At MediaMath we have developed a methodology for causal effect measurement where users are assigned to test or control BEFORE bid submission. One challenge here is that not all test-group users are exposed to an ad; only a winning bid results in ad exposure, and the winning population can have a significant bias. This talk will describe our approach to handle this and other challenges to ad impact measurement in this setting, and how we use MCMC Gibbs sampling to arrive at confidence intervals for ad-impact.

Biography

Prasad Chalasani is the SVP of Data Science at Media Math, leading the development of innovative, proprietary scalable algorithms, and analytics that leverage massive amounts of data to power smarter digital marketing for the world’s leading advertisers. Prior to joining Media Math, Prasad led Data Science at Yahoo Research, and before that worked for 10 years as a quantitative researcher and portfolio manager of statistical trading strategies at hedge funds and at Goldman Sachs. Prasad holds a PhD in Computer Science from CMU and BTech in Computer Science from IIT.