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ABSTRACT

We consider running-time optimization for band-joins in a

distributed system, e.g., the cloud. To balance load across

worker machines, input has to be partitioned, which causes

duplication. We explore how to resolve this tension between

maximum load per worker and input duplication for band-

joins between two relations. Previous work suffered from

high optimization cost or considered partitionings that were

too restricted (resulting in suboptimal join performance). Our

main insight is that recursive partitioning of the join-attribute

space with the appropriate split scoring measure can achieve

both low optimization cost and low join cost. It is the first

approach that is not only effective for one-dimensional band-

joins but also for joins on multiple attributes. Experiments

indicate that our method is able to find partitionings that are

within 10% of the lower bound for both maximum load per

worker and input duplication for a broad range of settings,

significantly improving over previous work.
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Figure 1: Join matrices for one-dimensional (1D) band-join

|S .A − T .A| ≤ ε for increasing band width ε from equi-join

(ε = 0) to Cartesian product (ε = ∞). Numbers on matrix

rows and columns indicate distinct A-values of input tuples.
Cell (i, j) corresponds to attribute pair (si , tj ) and is shaded

iff the pair fulfills the join condition and is in the output.

1 INTRODUCTION

Given two relations S and T , the band-join S ◃▹B T returns

all pairs (s ∈ S, t ∈ T ) that are “close” to each other. Close-

ness is determined based on band-width constraints on the

join attributes which we also call dimensions. This is related

to (but in some aspects more general than, and in others

a special case of) similarity joins (see Section 3). The Ora-

cle Database SQL Language Reference guide [23] presents a

one-dimensional (1D) example of a query finding employees

whose salaries differ by at most $100. Their discussion of

band-join specific optimizations highlights the operator’s im-

portance. Zhao et al [45] describe an astronomy application

where celestial objects are matched using band conditions

on time and coordinates ra (right ascension) and dec (decli-

nation). This type of approximate matching based on space

and time is very common in practice and leads to three-

dimensional (3D) band-joins like this:

Example 1. Consider bird-observation table Bwith columns

longitude, latitude, time, species, count, and weather

table W, reporting precipitation and temperature for location-

time combinations. A scientist studying how weather af-

fects bird sightings wants to join these tables on attributes

longitude, latitude, and time. Since weather reports do
not cover the exact time and location of the bird sighting,

she uses a band-join to link each bird report with weather

data for “nearby” time and location, e.g., |B.longitude −

W.longitude| ≤ 0.5 AND |B.latitude − W.latitude| ≤ 0.5
AND |B.time − W.time| ≤ 10.
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(d) Load distribution

Figure 2: Input (S , T ) and output (O) on workers w1 and w2

when splitting on x (top row). TheT -tuples shown in orange

are duplicated because they are within the bandwidth of the

split point. When splitting on y1 and y2, no tuple is dupli-

cated and load is perfectly balanced (bottom row).

We are interested in minimizing end-to-end running time

of distributed band-joins, which is the sum of (1) optimization

time (for finding a good execution strategy) and (2) join time

(for the join execution). Join time depends on the data parti-

tioning used to assign input records to worker machines. As

seen in Figure 1, band-joins generalize equi-join and Carte-

sian product. Partitioning algorithms with optimality guar-

antees are known only for these two extremes [1, 26, 29].

Example 2. To see why distributed band-joins are diffi-

cult, consider a 1D join with band width ε = 1 of S =
{1, 2, 3, 5, 6, 8, 9, 10} and T = {1, 5, 6, 10} on w = 2 work-

ers. For balancing load, we may split S on value x and send the

left half to workerw1 and the right half tow2 (see Figure 2a).

To not miss results near the split point, all T -tuples within
band width ε = 1 of x have to be copied across the boundary.

Figure 2b shows the resulting input and output tuples on each

worker, with duplicates in orange. By splitting in sparse regions

ofT , e.g., on y1 and y2 (Figures 2c and 2d), perfect load balance
can be achieved without input duplication.

The main contribution of this work is a novel algorithm

RecPart (Recursive Partitioning) that quickly and efficiently

finds split points such asy1 andy2. To do so, it has to carefully
navigate the tradeoff between load balance and input dupli-

cation. For instance, y1 by itself appears like a poor choice

from a load-balance point of view. It takes the additional

split on y2 to unlock y1’s true potential.
Overview of the approach. We propose recursive (i.e.,

hierarchical) partitioning of the join-attribute space, because

it offers a broad variety of partitioning options that can be

explored efficiently. As illustrated by the split tree in Figure 3,

each path from the root node to a leaf defines a partition of

the join-attribute space as a conjunction of the split pred-

icates in the nodes along the path. Like decision trees in

machine learning [16], RecPart’s split tree is grown from

the root, each time recursively splitting some leaf node. This
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Figure 3: Recursive split tree for a 2D band-join on latitude

and longitude. All splits are T -splits, i.e., T -tuples within

band width of the split boundary are sent to both children.

For instance, at the root the ε-range (orange box) of t1 crosses
the lon1 line and therefore the tuple is copied to the right

sub-tree (partition 1). The same happens again for the split

on lat1. This ensures that nomatch ismissed (e.g., (s2, t1)) and
no output tuple is produced twice.

step-wise expansion is a perfect solution for the problem of

navigating two optimization goals: minimizing max worker

load and minimizing input duplication. As RecPart grows

the tree, input duplication is monotonically increasing, be-

cause more tuples may have to be copied across a newly

added split boundary. At the same time, large partitions are

broken up and hence load balance may improve.

To find good partitionings, it is important to (1) use an

appropriate scoring function to pick a good split point (e.g.,

choose y1 or y2 over x in Figure 2) and to (2) choose the

best leaf to be split next. We propose the ratio between load

balance improvement and additional input duplication for

both decisions. In Example 2, this would favor y1 and y2 over
x , because they add zero duplication. Similarly, a leaf node

with a zero-duplicate split option would be preferred over a

leaf whose split would cause duplication.

When a leaf becomes so small that virtually all tuples in

the corresponding partition join with each other, then it is

not split any further. However, if the load induced by that

partition is high, then the leaf “internally” uses a grid-style

partitioning inspired by 1-Bucket [29] to create more fine-

grained partitions. This is motivated by the observation that

the band-join computation in a sufficiently small partition

behaves like a Cartesian product—for which 1-Bucket was

shown to be near-optimal.

Main contributions. (1) We demonstrate analytically

and empirically that previous work falls short either due

to high optimization time (to find a partitioning) or due to

high join time (caused by an inferior partitioning), especially

for band-joins in more than one dimension.

(2) To address those shortcomings, we propose recursive

partitioning of the multidimensional join-attribute space.

Given a fixed-size input and output sample, our algorithm
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Figure 4: Total input duplication (x-axis) and maximum

overhead across workers (y-axis) for a variety of data points

for our methodRecPart vs. 3 competitors (see Section 6 for

details). RecPart is always within 10% of the lower bounds

(0% duplication and 0% overhead).

RecPart finds a partitioning in O(w logw +wd), wherew is

the number of workers and d is the number of join attributes,

i.e., the dimensionality of the band-join. RecPart is inspired

by decision trees [16], which had not been explored in the

context of optimizing running time of distributed band-joins.

To make them work for our problem, we identify a new scor-

ing measure to determine the best split points: ratio of load

variance reduction to input duplication increase. It is informed

by our observation that a good split should improve load

balance with minimal additional input duplication. We also

identify a new stopping condition for tree growth.

(3)While we could not prove near-optimality of RecPart’s

partitioning, our experiments provide strong empirical ev-

idence. Across a variety of datasets, cluster sizes, and join

conditions, RecPart always found partitions for which both

total input duplication and max worker load were within 10%

of the corresponding lower bounds, beating all competitors

(even those with significantly higher optimization cost) by

a wide margin. Figure 4 shows this for a variety of prob-

lems (notice the log scale). The definition of the axes, the

algorithms, and the detailed experiments are presented in

Section 2, Section 3, and Section 6, respectively.

(4) We prove new Lemmas 2 and 3 that characterize when

grid partitioning will be effective for distributed band-joins.

Additional material can be found in the extended version

of this article [24].

2 PROBLEM DEFINITION

Without loss of generality, let S and T be two relations with

the same schema (A1,A2, . . . ,Ad ). Given a band width εi ≥ 0

for each attribute Ai , the band-join of S and T is defined as

S ◃▹B T = {(s, t) : s ∈ S ∧ t ∈ T ∧ ∀1≤i≤d |s .Ai − t .Ai | ≤ εi }.
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Figure 5: Overview of the proposed approach.

We call d the dimensionality of the join andAi the i-th dimen-

sion. We refer to the d-dimensional hyper-rectangle centered

around a tuple a with side-length 2εi in dimension i , formally

{(x1, . . . ,xd ) : ∀1≤i≤d a.Ai − εi ≤ xi ≤ a.Ai + εi }, as the
ε-range around a (depicted as an orange box in Figure 3).

Note that (s, t) is in the output iff s falls into the ε-range
around t (and vice versa). It is straightforward to general-

ize all results in this paper to asymmetric band conditions

(a.Ai − εiL ≤ xi ≤ a.Ai + εiR ) and to relations with attributes

that do not appear in the join condition.

Definition 1 (Join Partitioning). Given input relations

S and T with Q = S ◃▹B T and w worker machines. A join

partitioning is an assignment h : (S ∪T ) → 2
{1, ...,w } \ ∅ of

each input tuple to one or more workers so that each join result

q ∈ Q can be recovered by exactly one local join.

A local join is the band-join executed by a worker on the

input subset it receives. The definition ensures that each

output tuple is produced by exactly one worker, which avoids

an expensive post-processing phase for duplicate elimination

and is in line with previous work [1, 19, 29, 39].

Given S , T , and a band-join condition, our goal is to min-

imize the time to compute S ◃▹B T . This time is the sum of

optimization time (i.e., the time to find a join partitioning)

and join time (i.e., the time to compute the result based on

this partitioning), as illustrated in Figure 5.

We follow common practice and define the load Li on a

workerwi as the weighted sum Li = β2Ii + β3Oi , 0 ≤ β2, 0 ≤

β3 of input Ii and outputOi assigned to it [1, 26, 29, 39].Max

worker load Lm = maxi Li is the maximum load assigned to

any worker. In addition, we also evaluate a partitioning based

on its total amount of input I . It accounts for given inputs

S and T and all duplicates created by the partitioning, i.e.,

I =
∑

x ∈S∪T |h(x)|. Recall from Definition 1 that h assigns

input tuples to a subset of the workers, i.e., |h(x)| is the
number of workers that receive tuple x .

Lemma 1 (Lower Bounds). |S | + |T | is a lower bound for
total input I . And L0 = (β2(|S | + |T |) + β3 |S ◃▹B T |)/w is a

lower bound for max worker load Lm .



The lower bound for total input I follows fromDefinition 1,

because each input tuple has to be examined by at least one

worker. For max worker load, note that any partitioning has

to distribute a total input of at least |S |+ |T | and a total output
of |S ◃▹B T | over the w workers, for a total load of at least

β2(|S | + |T |) + β3 |S ◃▹B T |.
System Model and Measures of Success.We consider

the standard Hadoop MapReduce and Spark environment

where inputs S and T are stored in files. These files may

have been chunked up before the computation starts, with

chunks distributed over the workers. Or they may reside

in a separate cloud storage service such as Amazon’s S3.

The files are not pre-partitioned on the join attributes and

the workers do not have advance knowledge which chunk

contains which join-attribute values. Hence any desired join

partitioning requires that—in MapReduce terminology—(1)

the entire input is read by map tasks and (2) a full shuffle is

performed to group the data according to the partitioning

and have each group be processed by a reduce task.

In this setting, the shuffle time is determined by total input

I , and the duration of the reduce phase (each worker perform-

ing local joins) is determined by max worker load. Hence we

are interested in evaluating how close a partitioning comes

to the lower bounds for total input and max worker load

(Lemma 1). We use
I−(|S |+ |T |)

|S |+ |T |
and

Lm−L0
L0

, respectively, which

measure by how much a value exceeds the lower bound,

relative to the lower bound. For instance, for Lm = 11 and

L0 = 10 we obtain 0.1, meaning that the max worker load of

the partitioning is 10% higher than the lower bound.

For systems with very fast networks, an emerging trend [2,

34], data transfer time is negligible compared to local join

time, therefore the goal is to minimize max worker load,

i.e., the success measure is
Lm−L0
L0

. In applications where the

input is already pre-partitioned on the join attributes (e.g., for

dimension-dimension array joins [11]) the optimization goal

concentrates on reducing data movement [45]. There our

approach can be used to find the best pre-partitioning, i.e., to

chunk up the array on the dimensions.

In addition to comparing to the lower bounds, we also

measure end-to-end running time for a MapReduce/Spark

implementation of the band-join in the cloud. For join-time

estimation we rely on the model by Li et al. [25], which

was shown to be sufficiently accurate to optimize running

time of various algorithms, including equi-joins. Similar to

the equi-join model, our band-join model M takes as in-

put triple (I , Im ,Om) and estimates join time as a piecewise

linear model M(I , Im ,Om) = β0 + β1I + β2Im + β3Om . The

β-coefficients are determined using linear regression on a

small benchmark of training queries and inputs.
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Figure 6: Illustration of partitioningmethods for band-joins

in d-dimensional space for d = 1, 2, 3; the Ai are the join at-

tributes. Grid-ε and RecPart partition the d-dimensional

join-attribute space, while CSIO and 1-Bucket create parti-

tions by finding a cover of the 2-dimensional join matrix
S ×T , whose dimensions are independent of the dimension-

ality of the join condition. Bar height forRecPart and d = 1

indicates recursive partition order.

3 RELATEDWORK

3.1 Direct Competitors

Direct competitors are approaches that (1) support dis-

tributed band-joins and (2) optimize for load balance, i.e.,

max worker load or a similar measure. We classify them into

join-matrix covering vs attribute-space partitioning.

Join-matrix covering. These approaches model dis-

tributed join computation as a covering problem for the

join matrix J = S × T , whose rows correspond to S-tuples
and columns to T -tuples. A cell J (s, t) is “relevant” iff (s, t)
satisfies the join condition. Any theta-join, including band-

joins, can be represented as the corresponding set of relevant

cells in J . A join partitioning can then be obtained by cov-

ering all relevant cells with non-overlapping regions. Since

the exact set of relevant cells is not known a priori (it corre-

sponds to the to-be-computed output), the algorithm covers

a larger region of the matrix that is guaranteed to contain

all relevant cells. For instance, for inequality predicates, M-

Bucket-I [29] partitions both inputs on approximate quan-

tiles in one dimension and then covers with w rectangles

all regions corresponding to combinations of inter-quantile

ranges from S and T that could potentially contain relevant

cells. IEJoin [19] directly uses the same quantile-based range

partitioning, but without attempting to find a w-rectangle

cover. Its main contribution is a clever in-memory algorithm

for queries with two join predicates. Optimizing local pro-

cessing is orthogonal to our focus on how to assign input



tuples to multiple workers. In fact, one can use an adaptation

of their idea for local band-join computation on each worker.

To support any theta-join, 1-Bucket [29] covers the entire

join matrix with a grid of r rows and c columns. This is

illustrated for r = 3 and c = 4 in Figure 6. Each S-tuple
is randomly assigned to one of the r rows (which implies

that it is sent to all c partitions in this row); this process

is analogous for T -tuples, which are assigned to random

columns. While randomization achieves near-perfect load

balance, input is duplicated approximately

√
w times.

Zhang et al. [44] extend 1-Bucket to joins between many

relations. Koumarelas et al. [22] explore re-ordering of join-

matrix rows and columns to improve the running time of

M-Bucket-I [29]. However, like M-Bucket-I, their technique

does not take output distribution into account. This was

shown to lead to poor partitionings by Vitorovic et al. [39]

whose method CSIO represents the state of the art for dis-

tributed theta-joins. It relies on a carefully tuned optimiza-

tion pipeline that first range-partitions S andT using approx-

imate quantiles, then coarsens those partitions, and finally

finds the optimal (in terms of max worker load) rectangle

covering of the coarsened matrix. The resulting partition-

ing was shown to be superior—including for band-joins—to

direct quantile-based partitioning, which is used by IEJoin.

Figure 6 illustrates CSIO for a covering with four rectangles

for 1, 2 and 3 dimensions. The darker diagonal “bands” show

relevant matrix cells, i.e., cells that have to be covered. Notice

how join dimensionality affects relevant-cell locations, but

does not affect the dimensionality of the joinmatrix: for a join

between two input relations S and T , the join matrix is always

two-dimensional, with one dimension per input relation.

CSIO suffers from high optimization cost to find the cover-

ing rectangles, which uses a tiling algorithm of complexity

O(n5 logn) for n input tuples. Optimization cost can be re-

duced by coarsening the statistics used. Further reduction in

optimization cost is achieved for monotonic join matrices,

a property that holds for 1-dimensional band-joins but not

for multidimensional ones. As our experiments will show, the

high optimization cost hampers the approach for multidi-

mensional band-joins.

Attribute-space partitioning. Instead of using the 2-

dimensional S ×T join matrix, attribute-space partitioning

works in the d-dimensional space A1 × A2 × · · · × Ad de-

fined by the domains of the join attributes. Grid partition-

ing of the attribute space was explored in the early days of

parallel databases, yet only for one-dimensional conditions.

Soloviev [38] proposes the truncating hash algorithm and

shows that it improves over a parallel implementation of the

hybrid partitioned band-join algorithm by DeWitt et al. [9].

The method generalizes to more dimensions as illustrated in

the Grid-ε column in Figure 6. Grid cells define partitions

and are assigned to the workers.

By default, Grid-ε sets grid size for attribute Ai to the

band width εi in that dimension. This results in near-zero

optimization cost, but may create a poor load balance (for

skewed input) and high input duplication (when a partition

boundary cuts through a dense region). A coarser grid re-

duces input duplication, but the larger partitions make load

balancing more challenging. Our approach RecPart, which

also applies attribute-space partitioning, mitigates the prob-

lem by considering recursive partitionings that avoid cutting

through dense regions.

3.2 Other Related Work

Similarity joins are related to band-joins, but neither gen-

eralizes the other: the similarity joins closest to band-joins

define a pair (s ∈ S, t ∈ T ) as similar if sim(s, t) > θ , for some

similarity function sim and threshold θ . This includes 1D
band-joins as a special case, but does not support band-joins

in multiple dimensions. (A band-join in d dimensions has

2d threshold parameters for lower and upper limits in each

dimension.) A recent survey [13] compares 10 distributed

set-similarity join algorithms. The main focus of previous

work on similarity joins is on addressing the specific chal-

lenges posed by working in a general metric space where

vector-space operations such as addition and scalar multi-

plication (which band-joins can exploit) are not available. A

particular focus is on (1) identifying fast filters that prune

away a large fraction of candidate pairs without computing

their similarity and (2) selecting pivot elements or anchor

points to form partitions, e.g., via sampling [35].

Duggan et al [11] study skew-aware optimization for dis-

tributed array equi-joins (not band-joins). The work by

Zhao et al [45] is closest to ours, because they introduce array

similarity joins that can encode multi-dimensional band-join

conditions. However, it is not a direct competitor for Rec-

Part, because it considers a different optimization problem:

The array is assumed to be already grid-partitioned into

chunks on the join attributes and the main challenge is to co-

locate with minimal network cost those partitions that need

to be joined. Our approach is orthogonal for two reasons:

First, we do not make any assumptions about existing pre-

partitioning on the join attributes and hence the join requires

a full data shuffle. Second, we show that for band-joins, grid

partitioning is inferior to RecPart’s recursive partitioning.

Hence RecPart provides new insights for choosing better

array partitions when the array DBMS anticipates band-join

queries.

Attribute-space partitioning is explored in other con-

texts for optimization goals that are very different from dis-

tributed band-join optimization. For array tiling, the goal is

to minimize page accesses of range queries [14]. Here, like



Algorithm 1: RecPart

Data: S , T , band-join condition, sample size k
Result: Hierarchical partitioning P∗

of A1 × · · · ×Ad
1 Draw random input sample of size k/2 from S and T

2 Draw random output sample [39] of size up to k/2

3 Initialize P with root partition pr = A1 × · · · ×Ad
4 pr .(bestSplit, topScore) = best_split(pr )

5 repeat

6 Let p ∈ P be the leaf node with the highest topScore

7 Apply p.bestSplit

8 foreach newly created (for regular leaf split) or updated (for

small leaf split) leaf node p′ do
9 p′.(bestSplit, topScore) = best_split(p′)

10 until termination condition

11 Return best partitioning P∗
found

for histogram construction [32, 33], the band-join’s data du-

plication across a split boundary is not taken into account.

Histogram techniques optimize for a different goal: maxi-

mizing the information captured with a given number of

partitions. Only the equi-weight histograms by Vitorovic et

al. [39] take input duplication into account. We include their

approach CSIO in our comparison.

For equi-joins, several algorithms address skew by par-

titioning heavy hitters [1, 4, 10, 27, 30, 31, 41, 42]. Other

than the high-level idea of splitting up large partitions to

improve load balance, the concrete approaches do not carry

over to band-joins: They rely on the property that tuples

with different join values cannot be matched, i.e., do not cap-

ture that tuples within band width of a split boundary must

be duplicated. However, our decision to use load variance for

measuring load balance was inspired by the state-of-the-art

equi-join algorithm of Li et al. [26]. Earlier work relied on

hash partitioning [8, 21] and focused on assigning partitions

to processors [7, 12, 17, 18, 20, 34, 40]. Empirical studies of

parallel and distributed equi-joins include [3, 5, 8, 36, 37].

4 RECURSIVE PARTITIONING

We introduce RecPart and analyze its complexity.

4.1 Main Structure of the Algorithm

RecPart (Algorithm 1) is inspired by decision trees [16] and

recursively partitions the d-dimensional space spanned by

all join attributes. To adapt this high-level idea to running-

time optimization for band-joins, we (1) identify a new split-

scoring measure that determines the selection of split bound-

aries, (2) propose a new stopping condition for the splitting

process, and (3) propose an ordering to determine which tree

leaf to consider next for splitting. The splitting process is

illustrated in Figure 7.

Algorithm 2: best_split

Data: Partition p, input and output sample tuples in p,
number of row sub-partitions r and column

sub-partitions c (r = c = 1 for regular partitions)

Result: Split predicate bestSplit and its score topScore

1 Initialize topScore = 0 and bestSplit = NULL

2 if p is a regular partition then

// Find best decision-tree style split

3 foreach regular dimension Ai do
4 Let xi be the split predicate on dimension Ai that has

the highest ratio σi = ∆Var(xi )/∆Dup(xi ) among all

possible splits in dimension Ai
5 if σi > topScore then

6 Set topScore = σi and set bestSplit = xi
7 else

// Small partition: increment number of row or

column sub-partitions using 1-Bucket

8 Let σr = ∆Var(r + 1, c)/∆Dup(r + 1, c)

9 Let σc = ∆Var(r , c + 1)/∆Dup(r , c + 1)

10 if σr > σc then
11 Set topScore = σr and set bestSplit = row

12 else

13 Set topScore = σc and set bestSplit = column

14 Return (bestSplit, topScore)

*

*
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Figure 7: Recursive partitioning for a 2D band-join on at-

tributes A1 and A2. In the split tree, a path from the root

to a leaf defines a rectangular partition in A1 × A2 as the

conjunction of all predicates along the path. (By convention

the left child is the branch satisfying the split predicate.)

In small partitions such as 1.2, RecPart applies 1-Bucket.

Those partitions are terminal leaves in the split tree and

only change their “internal” partitioning.

Algorithm 1 starts with a single leaf node covering the

entire join-attribute space and calls best_split (Algorithm 2)



on this leaf to find the best possible split and its score. As-

suming the leaf is a “regular” partition (we discuss small

partitions below), best_split sorts the input sample on A1

and tries all middle-points between consecutiveA1-values as

possible split boundaries. Then it does the same for A2. The

winning split boundary is the one with the highest ratio be-

tween load-variance reduction and input duplication increase

(see details in Section 4.2).

Assume the best split is A2 < a. The first execution of the

repeat-loop then applies this split, creating new leaves “1”

and “2” and finding the best split for each of them.Which leaf

should be split next? RecPart manages all split-tree leaves in

a priority queue based on their topScore value. Assuming leaf

“1” has the higher score, the next repeat-loop iteration will

split it, creating new leaves “1.1” and “1.2”. This process con-

tinues until the appropriate termination condition is reached

(discussed below). As the split tree is grown, the algorithm

also keeps track of the best partitioning found so far.

4.2 Algorithm Details

Small partitions. When a partition becomes “small” rela-

tive to band width in a dimension, then no further recursive

splitting in that dimension is allowed. When the partition

is small in all dimensions, then it switches into a different

partitioning mode inspired by 1-Bucket [29]. This is moti-

vated by the observation that when the length of a partition

approaches band width in each dimension, then all S and

T -tuples in that partition join with each other. And for Carte-

sian products, 1-Bucket was shown to be near-optimal.

We define a partition as “small” as soon as its size is below

twice the band width in all dimensions. In Figure 7 step (4),

leaf “1.2” is small and hence when it is picked in the repeat-

loop, applying the best split leaves the split tree unchanged,

but instead increases the number of column partitions c
to 2. Afterward, the topScore value of leaf “1.2” may have

decreased and leaf “2” is split next, using a regular recursive

split. This may be followed by more “internal” splits of leaf

“1.2” in later iterations as shown in Figure 7, steps (6) and (7).

It is easy to show that having some leaves in “regular”

and others in “small” split mode does not affect correctness.

Intuitively, this is guaranteed because duplication only needs

to be considered inside the region that is further partitioned,

i.e., it does not “bleed” beyond partition boundaries.

Split scoring. In split score ∆Var(xi )/∆Dup(xi ) for a reg-
ular dimension (Algorithm 2), ∆Var(xi ) is defined as follows:
Let L denote the set of split-tree leaves. Each (sub-partition

in a) leaf corresponds to a region p in A1 × · · · × Ad , for

which we estimate input Ip and output Op from the random

samples drawn by Algorithm 1. The load induced by p is

lp = β2Ip + β3Op . Load variance is computed as follows: As-

sign each leaf in L to a randomly selected worker. Then

per-worker load is a random variable P (we slightly abuse

notation to avoid notational clutter) whose variance can be

shown to be V[P] = w−1
w2

∑
p∈L l2p . We analogously obtain

V(P ′) for a partitioning P ′
that results from splitting some

leaf p ′ ∈ L into sub-partitions p1 and p2 using predicate

xi . Then ∆V(xi ) = V(P
′) − V(P). V(P ′) can be computed

fromV(P) in constant time by subtracting
w−1
w2

lp′ and adding
w−1
w2

(lp1 + lp2 ).
The additional duplication caused by a split is obtained by

estimating the number of T -tuples within band width of the

new split boundary using the input sample. When multiple

split predicates cause no input duplication, then the best split

is the one with the greatest variance reduction among them.

The calculation of load variance and input duplication for

“small” leaves is analogous.

The split score reflects our goal of reducing max worker

load with minimal input duplication. For the former, load-

variance reduction could be replaced by other measures, but

precise estimation of input and output on the most loaded

worker is difficult due to dynamic load balancing applied by

schedulers at runtime. We therefore selected load variance

as a scheduler-independent proxy.

Termination condition and winning partitioning.

We propose a theoretical and an applied termination con-

dition for the repeat-loop in Algorithm 1. For the theoretical

approach, the winning partitioning is the one with the lowest

overhead over the lower bound in terms of both max worker

load and input duplication, i.e., the one with the minimal

value ofmax

{ I−(|S |+ |T |)

|S |+ |T |
;
Lm−L0
L0

}
. It is easy to show that each

iteration of the repeat-loop monotonically increases input

I , because each new split boundary (regular leaf) and more

fine-grained sub-partitioning (small leaf) can only increase

the number of input duplicates. At the same time, the loop

iteration may or may not decrease
Lm−L0
L0

. Hence repeat-loop

iterations can be terminated as soon as
I−(|S |+ |T |)

|S |+ |T |
exceeds

the smallest value of
Lm−L0
L0

encountered so far.

The theoretical approach only needs input and output

samples, as well as an estimate of the relative impact of an

input tuple versus an output tuple on local join computation

time. Input sampling is straightforward; for output sampling

we use the method from [39]. If the output is large, it effi-

ciently produces a large sample. If the output is small, then

the output has negligible impact on join computation cost.

The experiments show that we get good results when limit-

ing sample size based on memory size and sampling cost to

at most 5% of join time.

For estimating load impact, we run band-joins with differ-

ent input and output sizes I and O on an individual worker

and use linear regression to determine β2 and β3 in load func-

tion β2I + β3O . In our Amazon cloud cluster, β2/β3 ≈ 4. Note

that β2 and β3 tend to increase with input and output. For the



lower bound, we use the smallest values, i.e., those obtained

for scenarios where a node receives about 1/w of the input

(recall thatw is the number of workers). This establishes a

lower value for the lower bound, i.e., it is more challenging

for RecPart to be close to it.

For the applied approach, we use the cost model as dis-

cussed in the end of Section 2. The winning partitioning is

the one with the lowest running time predicted by the cost

model. Repeat-loop iterations terminate when estimated join

time bottoms out. We detect this based on a window of the

join times over the last w repeat-loop iterations: loop exe-

cution terminates when improvement is below 1% (or join

time even increased) over those lastw iterations. (We chose

w as window size because it would take at least one extra

split per worker to break up each worker’s load. This dove-

tails with the prioritization of leaves: The most promising

leaves in terms of splitting up loadwith low input duplication

overhead are greedily selected.)

Extension: symmetric partitioning. Like classic grid

partitioning, RecPart as discussed so far treats inputs S and

T differently: at an inner node in the split tree, S is parti-

tioned (without duplication), while T -tuples near the split
boundary are duplicated. For regions where S is sparse andT
is dense, we want to reverse these roles. Consider Figure 2c,

where y1 and y2 enabled a zero-duplication partitioning with

perfect load balance. What if the input distribution was re-

versed in another region of the join-attribute space, e.g.,

S ′ = {21, 25, 26, 30} and T ′ = {21, 22, 23, 25, 26, 28, 29, 30}?
Then no split in range 21 to 30 could avoid duplication of

T ′
-tuples because for band width 1 at least one of the T ′

-

values would be within 1 of the split point. In that scenario

we want to reverse the roles of S ′ and T ′
, i.e., perform the

partitioning on T ′
and the partition/duplication on S ′.

For grid partitioning, it is not clear how to reverse the roles

of S and T in some of the grid cells. For RecPart, this turns

out to be easy. When exploring split options in a regular

leaf (1-Bucket in small partitions already treats both inputs

symmetrically), Algorithm 2 computes the duplication for

both cases: partition S and partition/duplicate T as well as

the other way round. We call the former a T -split and the

latter an S-split. The split type information is added to the

corresponding node in the split tree.

Algorithm 3 is used to determine which tuples to assign

to the sub-trees. (Only the version for T -tuples is shown;
the one for S-tuples is analogous.) It is easy to show that for

each result (s, t) ∈ S ◃▹B T , exactly one leaf in the split tree

receives both s and t .

4.3 Algorithm Analysis

RecPart has low complexity, resulting in low optimization

time. Let λ denote the number of repeat-loop executions in

Algorithm 3: assign_input

Data: Input tuple t ∈ T ; node p in split tree

Result: Set of leaves to which t is copied
1 if p is a leaf then

2 Return (1-Bucket (t , p))

3 else

4 if p is a T -split node then
5 for each child partition p′ of p that intersects with the

ε-range of t do
6 assign_input(t , p′)

7 else

8 Let p′ be the child partition of p that contains t

9 assign_input(t, p′)

Algorithm 1. Each iteration increases the number of leaves

in the split tree by at most one. The algorithm manages all

leaves in a priority queue based on the score returned by Al-

gorithm 2. With a priority queue where inserts have constant

cost and removal of the top element takes time logarithmic

in queue size, an iteration of the repeat-loop takes O(log λ)
to remove the top-scoring leaf p. If p is regular, then it takes

O(1) to create sub-partitions p1 and p2 and to distribute all

input and output samples in p over them. (Sample size is

bounded by constant k , a fraction of machine-memory size.)

Checking if p1 and p2 are small partitions takes time O(d).
Then best_split is executed, which for a regular leaf requires

sorting of the input sample on each dimension and trying

all possible split points, each a middle point between two

consecutive sample tuples in that dimension. Since sample

size is upper-bounded by a constant, the cost is O(d). For a
small leaf, the cost is O(1). Finally, inserting p1 and p2 into
the priority queue takes O(1). In total, splitting a regular or

small leaf has complexity O(d) and O(1), respectively.

After λ executions of the repeat-loop in Algorithm 1, the

next iteration has complexity O(log λ + d). Hence the to-

tal cost of λ iterations is O(λ log λ + λd). In our experience,

the algorithm will terminate after a number of iterations

bounded by a small multiple of the number of worker ma-

chines. To see why, note that each iteration breaks up a large

partition p and replaces it by two (for regular p) or more

(for small p) sub-partitions. The split-scoring metric favors

breaking up heavy partitions, therefore load can be balanced

across workers fairly evenly as soon as the total number of

partitions reaches a small multiple of the number of workers.

This in turn implies for Algorithm 1, given samples of fixed

size, a total complexity of O(w logw +wd).

5 ANALYTICAL INSIGHTS

We present two surprising results about the ability of grid

partitioning to address load imbalances. For join-matrix cov-

ering approaches like CSIO that depend on the notion of a



total ordering of the join-attribute space, we explore how to

enumerate the multi-dimensional space.

5.1 Properties of Grid Partitioning

Without loss of generality, let S be the input that is parti-

tioned and T be the input that is partitioned/duplicated.

Input duplication. With grid-size in each dimension set

to the corresponding band width, the ε-range of a T -tuple
intersects with up to 3 grid cells per dimension, for a total

replication rate of O(3d ) in d dimensions. Can this exponen-

tial dependency on the dimensionality be addressed through

coarser partitioning? Unfortunately, for any non-trivial par-

titioning, asymptotically the replication rate is still at least

O(2d ). To construct the worst case, an adversary places all

input tuples near the corner of a centrally located grid cell.

Max worker load.We now show an even stronger neg-

ative result, indicating that grid-partitioning is inherently

limited in its ability to reduce max worker load, no matter the

number of workers or the grid size. Consider a partitioning

where one of the grid cells contains half of S and half of T .
Does there exist a more fine-grained grid partitioning where

none of the grid cells receives more than 10% of S and 10%

of T ? One may be tempted to answer in the affirmative: just

keep decreasing grid size in all dimensions until the target is

reached. Unfortunately, this does not hold as we show next.

Lemma 2. If there exists an ε-range in the join-attribute

space with n tuples fromT , then grid partitioning will create a

partition with at least n T -tuples, no matter the grid size.

Proof. For d = 1 consider an interval of size ε1 that con-
tains n T -tuples. If no split point partitions the interval, then
the partition containing it has all n T -tuples. Otherwise, i.e.,
if at least one split point partitions the interval, pick one of

the split points inside the interval, say X , and consider theT -
tuples copied to the grid cells adjacent toX . Since allT -tuples
in an interval of size ε1 are within ε1 of X , both grid cells

receive all n T -tuples from the interval. It is straightforward

to generalize this analysis to d > 1. �

In short, even though a more fine-grained partitioning can

split S into ever smaller pieces, the same is not possible forT
because of the duplication needed to ensure correctness for

a band-join. For skewed input, n in Lemma 2 can be O(|T |).
Interestingly, we now show that grid partitioning can behave

well in terms of load distribution for skewed input, as long

as the input is “sufficiently” large.

Lemma 3. Let c0 > 0 be a constant such that |S ◃▹B T | ≤
c0(|S |+ |T |). Let R (R′

) denote the region of size ε1×ε2×· · ·×εd
in the join attribute space containing the most tuples from S (T );
and let x (x ′

) andy (y ′
) denote the fraction of tuples from S and

T , respectively, it contains. If there exist constants 0 < c1 ≤ c2
such that c1 ≤ x/y ≤ c2 and c1 ≤ x ′/y ′ ≤ c2, then no region
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Figure 8: Impact of enumeration order of a multidimen-

sional space, here for a band-join between S and T on at-

tributesA1 andA2, on the location of cells in the join matrix

that may produce output. Here band width is smaller than

the height and width of each partition, resulting in a signif-

icantly sparser join matrix for row-major order.

of size ε1 × ε2 × · · · × εd contains more than O(
√
1/|S | + 1/|T |)

input tuples.

Proof. By definition, all S and T tuples in region R join

with each other. Together with |S ◃▹B T | ≤ c0(|S | + |T |) this
implies

x |S | ·y |T | ≤ c0(|S | + |T |) ⇒ xy ≤ c0(1/|S | + 1/|T |) (1)

From x/y ≤ c2 follows x
2 ≤ c2xy, then x2 ≤ c2c0(1/|S | +

1/|T |) (from (1)) and thus x ≤
√
c0c2

√
1/|S | + 1/|T | =

O(
√
1/|S | + 1/|T |). We show analogously for region R′

that

y ′ ≤
√
c0/c1

√
1/|S | + 1/|T | = O(

√
1/|S | + 1/|T |).

Since R is the region of size ε1 × ε2 × · · · × εd with most

S-tuples and R′
the region with most T -tuples, no region of

size ε1 × ε2 × · · · × εd can contain more than x fraction of

S-tuples and y ′
fraction of T -tuples. �

Lemma 3 is surprising. It states that for larger inputs S
and T , the fraction of S and T in any partition of Grid-ε
(recall that its partitions are of size ε1×ε2× · · · ×εd ) is upper-
bounded by a function that decreases proportionally with√
|S | and

√
|T |. For instance, when S and T double in size,

then the upper bound on the input fraction in any partition

decreases by a factor of

√
2 ≈ 1.4.

Clearly, this does not hold for all band joins. The proof

of Lemma 3 required (1) that the region with most S-tuples
contain a sufficiently large fraction of T , and vice versa; and

(2) that output size is bounded by c0 times input size. The

former is satisfied when S and T have a similar distribution

in join-attribute space, e.g., a self-join. For the latter, we are

aware of two scenarios. First, the user may actively try to

avoid huge outputs by setting a smaller band width. Second,

for any output-cost-dominated theta-join, 1-Bucket was

shown to be near-optimal [29]. Hence specialized band-join

solutions such as RecPart, Grid-ε , and CSIO would only be

considered when output is “sufficiently” small.

5.2 Ranges in Multidimensional Space

CSIO starts with a range partitioning of the join-attribute

space based on approximate quantiles. For quantiles to be



well-defined, a total order must be established on the multi-

dimensional space—this was left unspecified for CSIO. The

ordering can significantly impact performance as illustrated

in Figure 8 for a 2D band-join. In row-major order, ranges

correspond to long horizontal stripes. Alternatively, each

range may correspond to a “block,” creating more square-

shaped regions. This choice affects the candidate regions

in the join matrix that need to be covered. Assume each

horizontal stripe in Figure 8a is at least ε1 high. Then an

S-tuple in stripe i can only join with T -tuples in the three

stripes i − 1, i , and i + 1. This creates the compact candidate-

region diagonal of width 3 in the join matrix. For the block

partitioning in Figure 8b, S-tuples in a block may join with

T -tuples in up to nine neighboring blocks. This creates the

wider band in the join matrix. For CSIO, a wider diagonal

and denser matrix cause additional input duplication.

In general, the number of candidate cells in the join matrix

is minimized by row-major ordering, if the distance between

the hyperplanes in the most significant dimension is greater

than or equal to the band width in that dimension. This was the

case in our experiments and therefore row-major ordering

was selected for CSIO.

6 EXPERIMENTS

We compare the total running time (optimization plus join

time) of RecPart to the state of the art (Grid-ε , CSIO, 1-
Bucket). Note that Grid-ε is not defined for band width

zero. Reported times are measured on a real cloud, unless

stated otherwise. In large tables, we mark cells with the

main results in blue; red color highlights a weak spot, e.g.,

excessive optimization time or input duplication.

6.1 Experimental Setup

Environments. Both MapReduce [6] and Spark [43] are

well-suited for band-join implementation. Spark’s ability to

keep large data in memory makes little difference for the

map-shuffle-reduce pipeline of a band-join, therefore we use

MapReduce, where it is easier to control low-level behav-

ior such as custom data partitioning. All experiments were

conducted on Amazon’s Elastic MapReduce (EMR) cloud,

using 30 m3.xlarge machines (15GB RAM, 40GB disk, high

network performance) by default. All clusters run Hadoop

2.8.4 with the YARN scheduler in default configuration.

Data. For synthetic data, we use a Pareto distribution

where join-attribute value x is drawn from domain [1.0,∞)

of real numbers and follows PDF z/xz+1 (greater z creates
more skew). This models the famous power-law distribu-

tion observed in many real-world contexts, including the

80-20 rule for z = log
4
5 ≈ 1.16. We explore z in the range

[0.5, 2.0], which covers power-law distributions observed

in real data. pareto-z denotes a pair of tables, each with

Table 1: Band-join characteristics used in the experiments.

Input and output size are reported in [million tuples].

Data Set d Band width Input Size Output Size

pareto-1.5 1 0 400 2430

pareto-1.5 1 10
−5

400 4580

pareto-1.5 1 2 · 10−5 400 9120

pareto-1.5 1 3 · 10−5 400 11280

pareto-1.5 3 (0, 0, 0) 400 0

pareto-1.5 3 (2, 2, 2) 400 1120

pareto-1.5 3 (4, 4, 4) 400 8740

pareto-0.5 3 (2, 2, 2) 400 12

pareto-1.0 3 (2, 2, 2) 400 420

pareto-2.0 3 (2, 2, 2) 400 3200

pareto-1.5 8 (20, . . . , 20) 100 9

pareto-1.5 8 (20, . . . , 20) 200 57

pareto-1.5 8 (20, . . . , 20) 400 219

pareto-1.5 8 (20, . . . , 20) 800 857

rv-pareto-1.5 1 2 400 0

rv-pareto-1.5 1 1000 400 0

rv-pareto-1.5 3 (1000, 1000, 1000) 400 0

rv-pareto-1.5 3 (2000, 2000, 2000) 400 0

ebird and cloud 3 (0, 0, 0) 890 0

ebird and cloud 3 (1, 1, 1) 890 320

ebird and cloud 3 (2, 2, 2) 890 2134

ebird and cloud 3 (4, 4, 4) 890 16998

200 million tuples, with Pareto-distributed join attributes for

skew z. High-frequency values in S are also high-frequency

values inT . rv-pareto-z is the same as pareto-z, but high-
frequency values in S have low frequency in T , and vice

versa. Specifically, T follows a Pareto distribution from 10
6

down to −∞. (T is skewed toward larger values. We gener-

ate T by drawing numbers from [1.0,∞) following Pareto

distribution and then converting each number y to 10
6 − y.)

cloud is a real dataset containing 382 million cloud re-

ports [15], each reporting time, latitude, longitude, and 25

weather attributes. ebird is a real dataset containing 508

million bird sightings, each with attributes describing time,

latitude, longitude, species observed, and 1655 features of

the observation site [28].

For each input, we explore different band widths as sum-

marized in Table 1. Output sizes below 0.5 million are reported

as 0. For the real data, the three join attributes are time ([days]

since January 1st, 1970), latitude ([degrees] between −90 and

90) and longitude ([degrees] between −180 and 180).

Local join algorithm. After partitions are assigned to

workers, each worker needs to locally perform a band-join

on its partition(s). Many algorithms could be used, ranging

from nested-loop to adaptations of IEJoin’s sorted arrays

and bit-arrays. Since we focus on the partitioning aspect,

the choice of local implementation is orthogonal, because it

only affects the relative importance of optimizing for input

duplication vs optimizing for max worker load. We observed

that RecPartwins no matter what this ratio is set to, therefore



in our experiments we selected a fairly standard local band-

join algorithm based on index-nested-loops. (Let Sp and Tp
be the input in partition p.) (1) range-partition Tp on A1 into

ranges of size ε1. (Here A1 is the most selective dimension.)

(2) For each s ∈ Sp , use binary search to find the T -range i
containing s . Then check band condition on (s, t) for all t in
ranges (i − 1), i , and i + 1.

Since Grid-ε partitions are of size ε1 in dimension A1, we

slightly modify the above algorithm and sort both Sp and

Tp on A1. The binary search for s ∈ Sp then searches for

s .A1 − ε1 (the smallest tuple t ∈ Tp it could join with) and

scans the sorted T -array from there until s .A1 + ε1.
Statistics and running-timemodel.We sample 100,000

input records and set output-sample size so that total time

for statistics gathering does not exceed 5% of the fastest time

(optimization plus join time) observed for any method. For

output sampling we use the method introduced for CSIO [39].

For the cost model (see Section 2), we determine the model

coefficients (β-values) as discussed in [25] from a benchmark

of 100 queries. The benchmark is run offline once to profile

the performance aspects of a cluster.

6.2 Impact of Band Width

We explore the impact of band width, which affects out-

put. For comparison with grid partitioning, we turn Rec-

Part’s symmetric partitioning off, i.e., T is always the parti-

tioned/duplicated relation. Since the grid approaches do not

apply symmetric partitioning by design, all advantages of

RecPart in the experiments are due to the better partition

boundaries, not due to symmetric partitioning. (The impact

of symmetric partitioning is explored separately later.) To

avoid confusion, we refer to RecPart without symmetric

partitioning as RecPart-S.

6.2.1 Single Join Attribute. The left block in Table 2a reports

running times. RecPart-S wins in all cases, by up to a factor

of 2, but the other methods are competitive because the join

is in 1D and skew is moderate. For CSIO we tried different

parameter settings that control optimization time versus

partitioning quality, reporting the best found. The right block

in Table 2a reports input plus duplicates (I ), and the input

(Im) and output (Om) on the most loaded worker machine.

Recall that profiling revealed β2/β3 ≈ 4, i.e., each input tuple

incurs 4 times the load compared to an output tuple.

RecPart-S and CSIO achieve similar load characteristics,

because both intelligently leverage input and output samples

to balance load while avoiding input duplication. However,

RecPart-S finds a better partitioning (lowermaxworker load

and input duplication) with 10x lower optimization time. The

other two methods produce significantly higher input du-

plication, affecting I and Im . Grid-ε still shows competitive

running time because it works with a very fine-grained parti-

tioning, i.e., each worker receives its input already split into

many small grid cells. Data in a cell can be joined indepen-

dent of the other cells, resulting in efficient in-memory pro-

cessing. As a result, Grid-ε has lower per-tuple processing
time than the other methods. (There each worker receives its

input in a large “chunk” that needs to be range-partitioned.)

6.2.2 Multiple Join Attributes. Tables 2b and 2c show that

the performance gaps widen when joining on 3 attributes:

RecPart-S is the clear winner in total running time as well

as join time alone. It finds the partitioning with the lowest

max worker load, while keeping input duplication below 4%,

while the competitors created up to 12x input duplication.

CSIO is severely hampered by the complexity of the opti-

mization step. (Lowering optimization time resulted in higher

join time due to worse partitioning.) Grid-ε suffers from

O(3d ) input duplication in d dimensions. For 1-Bucket, note

that the numbers in Table 2a and Table 2b are virtually iden-

tical. This is due to the fact that it covers the entire join

matrix S × T , i.e., the matrix cover is not affected by the

dimensionality of the join condition.

Grid-ε has by far the highest input duplication, but again

recovers some of this cost due to its faster local processing

that exploits that each worker’s input arrives already parti-

tioned into small grid cells. This is especially visible when

comparing to 1-Bucket for band width (2, 2, 2) in Table 2c.

6.3 Skew Resistance

Table 3 investigates the impact of join-attribute skew, show-

ing that RecPart-S handles it the best, again achieving the

lowest max worker load with almost no input duplication. The

competitors suffer from high input duplication; CSIO also

from high optimization cost. Note that as skew increases,

output size increases as well. This is due to the power-law dis-

tribution and the correlation of high-frequency join-attribute

values in the two inputs. Greater output size implies a denser

join matrix for CSIO, increasing its optimization time.

6.4 Scalability

Tables 4a to 4d show that RecPart-S and RecPart have al-

most perfect scalability and beat all competitors. In Tables 4a

and 4b, from row to row, we double both input size and

number of workers. In Table 4c, only the input size varies

while the number of workers is constant. In Table 4d, we

only change the number of workers. The latter two results

are for an 8D band-join to explore which techniques can

scale beyond dimensionality common today. For cost reasons,

we use the running-time model to predict join time in Ta-

bles 4c and 4d. For queries on real data, the smaller inputs

are random samples from the full data. Note that join output

grows super-linearly, therefore perfect scalability cannot be



Table 2: Impact of band width: RecPart-S wins in all cases, and the winning margin gets bigger for band joins with more

dimensions. (Blue color highlights the main results; red color highlights a weak spot.)

(a) Pareto-1.5, d = 1, varying band width.

Band width Runtime (optimization time+join time) in [sec] Relative time over RecPart-S I/O sizes in [millions]: I , Im , Om
RecPart-S CSIO 1-Bucket Grid-ε CSIO 1-Bucket Grid-ε RecPart-S CSIO 1-Bucket Grid-ε

0 351(3+348) 512(29+483) 762 — 1.46 2.17 N/A 400 14 83 496 13 131 2200 73 81 — — —

10
−5

539(7+532) 684(29+655) 1004 540 1.27 1.86 1.00 400 12 158 475 8 266 2200 73 153 800 27 153

2·10−5 813(3+810) 992(30+962) 1316 834 1.22 1.62 1.03 401 13 305 488 10 388 2200 73 304 800 27 304

3·10−5 878(3+875) 1170(30+1140) 1520 956 1.33 1.73 1.09 401 12 384 479 10 503 2200 73 376 800 27 376

(b) Pareto-1.5, d = 3, varying band width.

Band width

Runtime (optimization time+join time) in [sec] Relative time over RecPart-S I/O sizes in [millions]: I , Im , Om
RecPart-S CSIO 1-Bucket Grid-ε CSIO 1-Bucket Grid-ε RecPart-S CSIO 1-Bucket Grid-ε

(0, 0, 0) 230(1+229) 366(46+320) 792 — 1.59 3.44 N/A 401 14 0 497 17 0 2200 73 0 — — —

(2, 2, 2) 344(2+342) 1339(694+645) 1149 1412 3.89 3.34 4.10 404 15 29 652 19 69 2200 73 37 5541 185 37

(4, 4, 4) 860(2+858) 2557(1345+1212) 1772 1816 2.97 2.06 2.11 413 14 290 838 31 321 2200 73 291 5485 183 291

(c) Join of ebird with cloud, d = 3, varying band width.

Band width

Runtime (optimization time+join time) in [sec] Relative time over RecPart-S I/O sizes in [millions]: I , Im , Om
RecPart-S CSIO 1-Bucket Grid-ε CSIO 1-Bucket Grid-ε RecPart-S CSIO 1-Bucket Grid-ε

(0, 0, 0) 248(3+245) 346(38+308) 1418 — 1.40 5.72 N/A 890 30 0 951 32 0 4832 161 0 — — —

(1, 1, 1) 332(3+329) 1945(968+977) 1532 1419 5.86 4.61 4.27 895 35 5 1490 95 9 4832 161 11 10891 361 11

(2, 2, 2) 423(3+420) 2615(1553+1062) 1573 1377 6.18 3.72 3.26 899 32 66 1830 107 74 4832 161 67 10783 361 74

Table 3: Skew resistance: RecPart-S is fastest and has much less data duplication than other methods. (Pareto-z, d = 3, band

width (2, 2, 2), and increasing skew z = 0.5, . . . , 2.)

Data Sets

Runtime (optimization time+join time) in [sec] Relative time over RecPart-S I/O sizes in [millions]: I , Im , Om
RecPart-S CSIO 1-Bucket Grid-ε CSIO 1-Bucket Grid-ε RecPart-S CSIO 1-Bucket Grid-ε

pareto-0.5 230 (3+227) 609 (263+346) 1137 1146 2.65 4.94 4.98 401 13 0.3 577 20 1 2200 73 0.4 5582 186 0.4

pareto-1.0 290 (3+287) 1064 (525+539) 1235 1335 3.67 4.26 4.60 401 13 17 616 20 31 2200 73 14 5554 185 14

pareto-1.5 344 (2+342) 1339 (694+645) 1149 1412 3.89 3.34 4.10 404 15 29 652 19 69 2200 73 37 5541 185 37

pareto-2.0 485 (2+483) 1811 (1000+811) 1369 2417 3.73 2.82 4.98 406 14 111 747 19 168 2200 73 107 5522 184 107

achieved. Nevertheless, RecPart-S and RecPart come close

to the ideal when taking the output increase into account.

When the same query is run on different-sized clusters (Ta-

ble 4d), RecPart scales out best. CSIO’s optimization time

grows substantially asw increases. We explored various set-

tings, but reducing optimization time resulted in even higher

join time and vice versa. The numbers shown represent the

best tradeoff found. Grid-ε failed on the largest synthetic

input due to a memory exception caused by one of the grid

cells receiving too many input records.

6.5 Optimizing Grid Size

Table 5 shows that grid granularity has a significant impact

on join time, here model estimated, of Grid-ε . With the

default grid size (2, 2, 2), join time is 9x higher compared

to grid size (32, 32, 32), caused by input duplication. Our

extension Grid* automatically explores different grid sizes,

using the same running-time modelM as RecPart and CSIO

to find the best setting. Starting with grid size εi in dimension

i for all join attributes Ai , it tries coarsening the grid to size

j · εi in dimension i , for j = 2, 3, . . . For each resulting grid

partitioning G, we execute M(G) to let model M predict

the running time, until a local minimum is found.

Automatic grid tuning works well for Pareto-z where

both inputs are similarly distributed and band width is small:

Lemma 3 applies with large c1 and small c2, providing strong
upper bounds on the amount of input in any ε-range. This
confirms that grid-partitioning can indeed work well for

“sufficiently large” input even in 3D space. However, Grid*

fails on the reverse Pareto distribution as Table 6 shows.

There S and T have very different density, resulting in small

c1 and large c2, and therefore much weaker upper bounds on

the input per ε-range. The resulting dense regions, as stated

by Lemma 2, cause high input duplication and high input Im
assigned to the most loaded worker.

6.6 Comparing to Distributed IEJoin

Table 7 shows representative results for a comparison to the

quantile-based partitioning used by IEJoin [19]. We explore

a wide range of inter-quantile ranges (sizePerBlock) and re-

port results for those at and near the best setting found. Note

that RecPart can use the same local processing algorithm

as IEJoin, therefore we are interested in comparing based

on the quality of the partitioning, i.e., I , Im , and Om . It is

clearly visible that RecPart-S finds significantly better parti-

tionings, providing more evidence that simple quantile-based

partitioning of the join matrix does not suffice.



Table 4: Scalability experiments: RecPart-S and RecPart have almost perfect scalability and beat all competitors. (Dataset

X/Y/w in (a) and (b) refers to X million input and Y million output onw workers.)

(a) Pareto-1.5, d = 3, band width (2, 2, 2).

Data Sets

Runtime (optimization time+join time) in [sec] Relative time over RecPart-S I/O sizes in [millions]: I , Im , Om
RecPart-S CSIO 1-Bucket Grid-ε CSIO 1-Bucket Grid-ε RecPart-S CSIO 1-Bucket Grid-ε

200/282/15 306 (1+305) 1227 (767+460) 779 1381 4.01 2.55 4.51 202 13 20 290 19 36 800 53 19 2772 185 19

400/1120/30 344 (2+342) 1374 (729+645) 1149 1412 3.99 3.34 4.10 404 15 29 652 19 69 2200 73 37 5541 185 37

800/4460/60 438 (4+434) 1721 (801+920) 1731 failed 3.93 3.95 N/A 809 21 45 1690 42 74 6400 107 74 11089 185 74

(b) Join of ebird with cloud, d = 3, band width (2, 2, 2).

Data Sets

Runtime (optimization time+join time) in [sec] Relative time over RecPart-S I/O sizes in [millions]: I , Im , Om
RecPart-S CSIO 1-Bucket Grid-ε CSIO 1-Bucket Grid-ε RecPart-S CSIO 1-Bucket Grid-ε

222/134/15 207 (3+204) 1213 (942+271) 547 812 5.86 2.64 3.92 223 15 11 307 22 11 856 57 9 2688 179 9

445/530/30 193 (3+190) 1778 (1447+331) 688 771 9.21 3.56 3.99 448 16 14 748 26 27 2420 81 18 5403 180 18

890/2000/60 215 (2+213) 1919 (1479
∗
+440) 1117 793 8.93 5.20 3.69 899 13 44 2040 38 35 6870 114 36 10805 180 36

∗
optimization time for 890/2000/60 is similar to that of 445/530/30 after we tuned parameters for CSIO s.t. it could finish optimization within 90 minutes.

(c) Varying input size: pareto-1.5, d = 8, band width is 20 in each dimension, 30 workers.

Input Size

in [millions]

Join Result Size

in [millions]

Runtime (optimization time+join time) in [sec] I/O sizes in [millions]: I , Im ,Om
RecPart CSIO 1-Bucket Grid-ε RecPart CSIO 1-Bucket Grid-ε

100 9 61 (5+56) 528 (449+79) 292 173,581 104 3 2 142 5 1 550 18 0.3 297,421 9,914 0.3

200 57 120 (5+115) 612 (448+164) 587 347,944 210 7 2 285 10 5 1100 37 2 594,834 19,828 2

400 219 240 (8+232) 760 (418+342) 1180 694,574 420 14 7 574 7 67 2200 73 7 1,189,996 39,667 7

800 857 510 (17+493) 1166 (423+743) 2390 1.39 · 106 847 26 31 1180 53 4 4400 147 29 2,379,329 79,311 29

(d) Varying number of workers (w): pareto-1.5, d = 8, band width is 20 in each dimension, input size 400 million.

w
Join Result Size

in [millions]

Runtime (optimization time+join time) in [sec] I/O sizes in [millions]: I , Im ,Om
RecPart CSIO 1-Bucket Grid-ε RecPart CSIO 1-Bucket Grid-ε

1

219

3655 3655 3655 8,527,502 400 400 219 400 400 219 400 400 219 1,189,996 1,189,996 219

15 358 (5+353) 710 (190+520) 1295 1,040,000 420 28 10 565 40 29 1600 107 15 1,189,996 79,333 15

30 240 (8+232) 760 (418+342) 1180 695,000 420 14 7 574 7 67 2200 73 7 1,189,996 39,667 7

60 182 (10+172) 3703 (3431+272) 1287 525,000 425 6 5 619 13 2 3200 53 4 1,189,996 19,833 4

Table 5: Grid-ε vs. Grid* on pareto-1.5, band width (2, 2, 2),

varying grid size (I , Im and Om in [millions]).

Grid-ε I Im Om Join Time

Grid Size I Im Om Join Time Grid*

(1,1,1) 5610 180 38 2993 460 16 46 335

(2,2,2) 5541 185 37 3021 RecPart-S

(4,4,4) 1780 60 38 1023 404 15 29 286

(8,8,8) 861 29 38 533 CSIO

(16,16,16) 582 20 39 389 652 19 69 459

(32,32,32) 478 16 42 336 1-Bucket

(64,64,64) 435 15 56 344 2200 73 37 1236

Table 6: Grid* vs. RecPart. I/O sizes in [millions].

Data Sets Band width

RecPart Grid*

I Im Om Grid Size I Im Om
pareto-2.0 (2,2,2) 406 14 111 8 497 17 130

rv-pareto-1.5 (1K,1K,1K) 400 13 0 2750 882 237 0

rv-pareto-1.5 (2K,2K,2K) 401 13 0 11500 1207 401 0

6.7 Impact of Local Join Algorithm

Table 8 shows a typical result of the impact of ratio β2/β1.
A high ratio occurs in systems with fast data transfer and

slow local computation. Replacing the local band-join algo-

rithm with a faster one would lower the ratio. While the

competitors are not affected by the ratio (they all ignore net-

work shuffle time), it is visible how increasing weight on local

Table 7: Comparing to distributed IEJoin: Input duplication

and max worker load on pareto-z,w = 30, varying skew and

band width (I , Im and Om in [millions]).

Z
Band Output

size

RecPart-S IEJoin

width I Im Om I Im Om sizePerBlock

1.5 [0,0,0] 0 401 14 0

780 40 0 10000

726 25 0 12524

756 28 0 14000

1.5 [2,2,2] 1120 404 15 29

1092 48 14 6000

1070 45 21 7422

1062 36 85 9000

1.0 [2,2,2] 420 401 13 17

1176 40 21 4000

1080 37 26 6263

1088 48 4 8000

0.5 [2,2,2] 12 401 13 0.3

828 24 1 6000

796 17 2 8295

820 20 2 10000

join cost makes RecPart reduce max worker load, incurring

slightly higher input duplication.

6.8 Impact of Symmetric Partitioning

While RecPart and RecPart-S find similar partitionings

on pareto-1.0 and the real data, the advantages of sym-

metric partitioning are revealed on the reverse Pareto data

in Table 9. Here RecPart-S cannot split regions with high

density of T without incurring high input duplication. In



Table 8: Impact of local join algorithm: Input duplication I
vs max worker load Lm = 4Im +Om for varying ratios β2/β1
for join of ebird with cloud, band width (2, 2, 2),w = 30.

β2/β1
RecPart CSIO 1-Bucket Grid-ε

I Lm I Lm I Lm I Lm
0.0001 890.34 289

1830 502 4832 711 10800 1518

0.001 890.36 223

0.01 890.42 195

0.1 890.52 191

1 890.8 189

10 890.8 189

100 890.8 189

1000 890.8 189

10000 890.8 189

Table 9: RecPart-S vs. RecPart (I/O sizes in [millions]).

Data Sets Band width

RecPart-S RecPart

I Im Om I Im Om
pareto-1.0 (2,2,2) 401 13 17 401 12 21

ebird and cloud (0,0,0) 890 30 0 890 30 0

ebird and cloud (2,2,2) 899 32 66 891 31 67

ebird and cloud (4,4,4) 918 31 567 894 30 515

rv-pareto-1.5 (1000,1000,1000) 452 143 0 400 13 0

rv-pareto-1.5 (2000,2000,2000) 430 173 0 401 13 0

rv-pareto-1.5 2 433 40 0 401 14 0

rv-pareto-1.5 1000 402 200 0 402 14 0
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Figure 9: Accuracy of the running-time model: Cumulative

distribution of model error.

contrast, RecPart switches the roles of S andT , because S is

sparse in those regions and hence the split creates few input

duplicates.

6.9 Accuracy of the Running-Time Model

In all experiments, the running-time model’s predictions

were sufficiently accurate for identifying excellent partition-

ings for RecPart. Due to the high cost in terms of time and

money of executing computations in the cloud, we some-

times rely on the running-time model also to report join time.

Figure 9 shows the cumulative distribution of the relative

error between predicted and measured join time for over 80

experiments selected randomly from all runs. E.g., the model

has less than 20% error in over 70% of the cases and it is

never off by more than a factor 1.8.

6.10 Near-Optimality of Our Approach

Figure 4 in Section 1 summarizes the results from all tables,

making it easy to see how RecPart achieves significantly

lower max worker load (y-axis) with less input duplication

(x-axis). RecPart is always within 10% of the lower bound on

both measures, beating the competition by a wide margin.

7 CONCLUSIONS

For distributed band-joins, we showed that recursive parti-

tioning with the appropriate split-scoring measure achieves

both low optimization time (a few seconds) and near-optimal

join partitioning (within 10% of the respective lower bounds)

on input duplication and max worker load. Even if system

parameters change, e.g., due to faster networks or CPUs,

RecPart’s achievement will still stand, because the issues of

low input duplication and low input and output per worker

will remain crucial optimization goals.

There are several exciting directions for future work. First,

for band-joins between more than two relations, can one do

better than reducing the problem to multiple two-way joins?

Second, how do we partition for join conditions that contain

a mix of various types of predicates, e.g., equality, inequality,

band, and non-equality? Third, what other types of join

conditions give rise to specialized methods, like RecPart for

band-join, so that similarly significant improvements over

generic theta-join approaches can be achieved?

More information about RecPart and other techniques

for distributed data-intensive computations can be found at

https://northeastern-datalab.github.io/distributed/.
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