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Abstract

Discovering additive structure is an impor-
tant step towards understanding a complex
multi-dimensional function because it allows
the function to be expressed as the sum of
lower-dimensional components. When vari-
ables interact, however, their effects are not
additive and must be modeled and inter-
preted simultaneously. We present a new
approach for the problem of interaction de-
tection. Our method is based on compar-
ing the performance of unrestricted and re-
stricted prediction models, where restricted
models are prevented from modeling an in-
teraction in question. We show that an addi-
tive model-based regression ensemble, Addi-
tive Groves, can be restricted appropriately
for use with this framework, and thus has the
right properties for accurately detecting vari-
able interactions.

1. Introduction

Many scientific inquiries seek to identify what variables
are important and to describe their effects. Discovery
of additive structure is an important step towards un-
derstanding a complex multi-dimensional function, be-
cause it allows for expressing this function as the sum
of lower-dimensional components. When variables in-
teract, their effects cannot be decomposed into in-
dependent lower-dimensional contributions and hence
must be modeled simultaneously. In this paper we de-
velop a methodology to automatically identify additive
and interactive structure among large sets of variables.
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The term statistical interaction is used to describe the
presence of non-additive effects among two or more
variables in a function. Two variables are said to in-
teract when the effect of one variable on the response
depends on values of the other variable. Precisely, vari-
ables xi and xj interact in F (x) when partial deriva-

tive ∂F (x)
∂xi

depends on xj or, more generally, when the
“difference in the value of F (x) for different values of

xi depends on the value of xj” (Friedman & Popescu,
2005). This is equivalent to the following definition:

Function F (x), where x = (x1, x2, . . . , xn), shows no
interaction between variables xi and xj if it can be
expressed as the sum of two functions, f\j and f\i,
where f\j does not depend on xj and f\i does not
depend on xi:

F (x) = f\j(x1, . . . , xj−1, xj+1, . . . , xn)

+f\i(x1, . . . , xi−1, xi+1, . . . , xn) (1)

For example, F (x1, x2, x3) = sin(x1 + x2) + x1x3 has
interactions between x1 and x2 and also between x1

and x3, but no interaction between x2 and x3.
1

Higher-order interactions between a larger number of
variables are defined similarly. There is no K-way in-
teraction between K variables in the function, if it
can be represented as a sum of K (or fewer) functions,
each of which does not depend on at least one variable
in question. If such representation is not possible, we
say that there is a K-way interaction. Function xx2+x3

1

shows a 3-way interaction between x1, x2 and x3, while
x1x2 + x2x3 + x1x3 has all pairwise interactions, but
not a 3-way interaction.

1It is important to stress that the concept of statisti-
cal interaction is completely unrelated to the dependence
and independence of variable distributions. Some authors
use “interaction” to refer to different types of dependen-
cies between variables, e.g., correlation (Jakulin & Bratko,
2004). In this paper we discuss statistical (non-additive)
interactions only, not correlation or statistical dependence.
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Interaction detection has high practical importance
because it provides valuable knowledge about a do-
main. For example, our experiments with bird abun-
dance data (Section 7) demonstrate that detection of
spatio-temporal interactions can signal changes in the
environment. In this particular case, a fatal eye dis-
ease was spreading slowly from the Northeastern US
to other regions. This disease affected the annual bird
abundance differently depending on location, creating
a strong interaction between time and location.

Interactions are also an important part of statistical
analysis. Early methods for interaction detection were
parametric and required explicit modeling of interac-
tions, most often as multiplicative terms. As a con-
sequence, only limited types of interactions could be
detected. More general approaches were introduced
recently (Friedman & Popescu, 2005; Hooker, 2007).
These methods are based on building a model and
detecting interactions in the function learned by the
model. A major shortcoming of this approach is that
the model may detect spurious interactions over re-
gions of the input space where data is scarce, and
known solutions to this problem are either inadequate
or computationally expensive. (See (Hooker, 2007)
and Section 8 of this paper for more details.)

We introduce a new approach to interaction detec-
tion. It is based on comparing the performance of
restricted and unrestricted predictive models. This
avoids the drawbacks of previous methods, because it
does not require explicit modeling of interacting terms
and reports only those interactions that are present in
the actual input data. However, the choice of model
and the restriction algorithm used are crucial for this
framework. We explain why additive models are able
to provide the required accurate restrictions and fur-
ther show that Additive Groves (Sorokina et al., 2007),
an additive model-based ensemble of regression trees,
works well in this framework. We also investigate how
correlations in the data complicate interaction detec-
tion and suggest how this problem can be dealt with
via feature selection.

The advantage of our new approach for interaction
detection, compared with traditional statistical ap-
proaches, is that it is more automatic and does not
require limiting the functional form that interactions
might take. Statistical methods often represent only
multiplicative interactions and thus may miss other
forms of interactions. When little is known about the
system under study, data-driven scientific discovery re-
quires the data to “speak for themselves” with a min-
imum of analyst input or assumptions. It is possi-
ble to conduct a fully nonparametric analysis with the

method we propose in this paper, which is particularly
valuable for exploratory analysis.

2. Estimating Interactions

Let F ∗(x) be an unknown target function and let F (x)
be a highly accurate model of F ∗ that can be learned
from a given set of training data. Furthermore, let
Rij(x) denote a restricted model of F ∗ that is learned
from the same training data. It is restricted in the
sense that it is not allowed to contain an interaction
between xi and xj , but apart from this limitation
should be as accurate a model of F ∗ as possible.

Our interaction estimation technique is based on the
following observation. If xi and xj interact, then F (x)
should have significantly better predictive performance
than Rij(x), because the latter cannot accurately cap-
ture the true functional dependency between xi and
xj . On the other hand, if the two variables do not
interact, then the absence of the interaction from the
model should not hurt its quality. Hence in the absence
of an interaction between xi and xj the predictive per-
formance of the restricted and the unrestricted model
should be comparable. Note that in order to get an
adequate estimate of performance, we must measure
it on test data not used for training.

Quantifying interaction strength. We can quan-
tify Iij , the degree of interaction between xi and xj ,
by the difference in performance between F (x) and
Rij(x). We measure performance as standardized
RMSE: root mean squared error (RMSE) scaled by
the standard deviation in the response function. Scal-
ing is done to make the results comparable across dif-
ferent data sets; StD(F ∗(x)) is calculated as standard
deviation of the response values in the training data.

stRMSE(F (x)) =
RMSE(F (x))

StD(F ∗(x))
(2)

Iij(F (x)) = stRMSE(F (x)) − stRMSE(Rij(x)) (3)

Setting the threshold. To distinguish whether a
positive value of Iij indicates presence of an interac-
tion or happened due to random variation, we measure
whether the performance of Rij(x) is significantly dif-
ferent from the performance of F (x). We follow com-
mon practice and define a difference of three standard
deviations of the latter from its mean as significant.
The distribution of stRMSE(F (x)) can come either
from different random seeds for bagging or from dif-
ferent data samples (e.g., n-fold cross validation). The
threshold for significant interactions then becomes:

Iij(F (x)) > 3 · StD(stRMSE(F (x))) (4)
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Note that everything above naturally generalizes to
higher-order interactions as long as there exists a
method to restrict the model on a specific type of in-
teraction.

3. Choosing a Prediction Model

To correctly estimate interaction strength with our
model comparison technique, we have to make sure
that a model has the following key properties:

1. High predictive performance when modeling in-
teractions: if there is an interaction, it should be
captured by the unrestricted model.

2. High predictive performance when the model is re-
stricted on non-interacting variables: if there is no
interaction, performance of the restricted model
should be no worse than the performance of the
corresponding unrestricted model.

The first requirement is satisfied by many learning
techniques, e.g., bagged decision trees of adequate
depth, SVMs, or neural nets. Boosted stumps, on
the other hand, do not model interactions. Since they
represent functions as the sum of components, each
of which depends only on a single variable, boosted
1-level stumps cannot be used in our framework.

While many models satisfy the first requirement, the
second requirement — that models perform as well
when interaction between non-interacting variables is
restricted — is far more challenging. Even when there
is a straightforward way of explicitly preventing spe-
cific interactions, often the resulting restricted model
will not perform as well as the unrestricted model be-
cause the restriction may hamper the search in model
space compared to the unrestricted model.

Consider a single decision tree. Variables in the tree
can interact only if they are used on the same branch
of the tree. So the obvious way to restrict interaction
between specific variables is to not use one of them if
the other already was used earlier on this branch. Now
suppose there is no interaction between variables A
and B, but they both are important — if the tree does
not use one of them, its performance drops. Assume
further that A is more important than B. The tree
will tend to choose A earlier than B on all branches
(in the worst case it will use A at the root) and will
then never be able to choose B. Since B is important,
the performance of this restricted tree will drop even
though there was no interaction between A and B.

One might be tempted to address this problem with
an ensemble method like bagging. Unfortunately the
situation will not improve much. In bagging, every
tree tries to capture the same function from a different

sample of the train set. If A is more important, most
trees will choose A before B, use of B will be restricted,
and performance will drop as before.

Additive models. To detect absence of interactions

between important variables, we need to build a re-
stricted model that uses these variables in different
additive components of the function. There is a class
of ensembles that allows us to do this: additive models.
Each component in an additive model is trained on the
residuals of predictions of all other previous models in
the ensemble. The training set for the new model com-
ponent is created as the difference between true func-
tion values and current predictions of the ensemble.
This way, when the function has additive structure,
different models (or groups of models) are forced to
find and model different components of this structure
as opposed to each modeling the whole function.

Not all models that fit residuals are suitable for this
framework. Linear models do not model interactions,
while generalized linear models disguise additive struc-
ture with a non-linear transformation. Neural net-
works pose problems because they either have addi-
tive structure (1 internal layer), or the ability to model
complex non-linear functions (several layers), while we
need an algorithm that combines both. Restricting in-
teractions in a multi-level network splits it into sub-
nets, ultimately leading to ”groves of nets”.

In this paper we use layered Additive Groves (Sorokina
et al., 2007). There exist other methods that might
work as well, e.g., gradient boosting trained to mini-
mize least squares loss (Friedman, 2001). However, it
is important to understand that the two requirements
stated in the beginning of this section are crucial and
many (most?) learning algorithms do not satisfy them.

4. Additive Groves of Regression Trees

Additive Groves is an ensemble of trees introduced in
(Sorokina et al., 2007). The combination of the ability
to model additive structure of the response and to also
use large trees that capture complex interactions make
Groves suitable for interaction detection.

A single Grove of trees is an additive model where each
additive component is represented by a regression tree.
Additive Groves use regression trees trained to mini-
mize mean squared error. Tree size is controlled by a
parameter α, the minimum fraction of train set cases
in a non-leaf node. A single Grove is trained similar to
an additive model: each tree is trained on the residuals
of the sum of the predictions of the other trees. Trees
are discarded and retrained in turn until the overall
predictions converge to a stable function. For the pur-
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Algorithm 1 Layered training of a single Grove

function Layered(α,N ,TrainSet{x, y})
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α
for i = 1 to N do

Treei = 0
for j = 0 to max do

repeat
for i = 1 to N do

newTrainSet = {x, y − ∑

k 6=i Treek(x)}
Treei = TrainTree(αj ,newTrainSet)

until (change from the last iteration is small)

pose of interaction detection we use layered training
of Additive Groves (Algorithm 1). The main differ-
ence between layered training and training classical
additive models is the following: Additive Groves be-
gin with an ensemble of very small trees; then during
re-training we gradually increase tree size by adding
more branches. This layered approach ensures fitting
of additive structure of the response function. As with
single trees, a single Grove can still overfit to the train-
ing data. Hence for the Additive Groves ensemble, we
wrap bagging around the layered training algorithm:
many single Groves are built on bootstrap samples of
the training set and their results are averaged. This
procedure reduces variance and yields a very powerful
predictive model.

Additive models provide an intuitive and easy way for
restricting interactions. Assume we want to restrict
a single Grove to not contain interactions between xi

and xj . Since the modeled function is computed as
the sum of the predictions of the individual trees, we
only have to enforce that none of the trees uses both xi

and xj . To decide if a tree is not allowed to use xi (or
otherwise xj), we use a greedy procedure. Each time
we train a tree, we first construct two trees: one does
not use xi, the other does not use xj . The one resulting
in better performance is inserted into the model, the
other one is discarded. For evaluating performance
we use the out-of-bag samples, i.e., that part of the
training data that did not get into the current sample
and therefore was not used to train the trees.

If we need to restrict on a higher-order interaction
(say, k-way interaction between k variables), we need
to build k candidate trees instead of 2 every time: each
tree is not allowed to use one of the variables. Note
that the complexity of testing for a single k-way inter-
action depends only linearly on k.

(Sorokina et al., 2007) also suggest another, “dynamic
programming”, style of training for Additive Groves.
The method starts with a single small tree. Then on

every retraining stage it either increases tree size or
adds another tree, which is decided by a heuristic. Al-
though this method provides better performance for
unrestricted models, we have encountered problems
with it when training restricted models. Therefore we
prefer layered Additive Groves for interaction detec-
tion. Note that we need to use layered training even for
the unrestricted model in order for the performances
to be comparable.

5. Feature Selection

Correlations among features are common and compli-
cate the task of detecting interactions. Suppose there
exists an interaction between variables xi and xj . At
the same time, a third variable, xk, is present in the
data. Assume it is highly correlated with xj , to such
an extent that the model can freely use either xk or xj

with similar results. In this case we will not be able
to detect the interaction between xi and xj . When we
restrict the model to prevent a tree from using xj , it
can use xk instead and performance will not drop. The
same will happen when we try to detect an interaction
between xi and xk.

Correlation among features is an intrinsic problem of
high dimensional data that confronts all methods for
interaction detection. For example, methods based on
partial dependence functions (Friedman & Popescu,
2005) suffer from a similar problem. The unrestricted
prediction model might sometimes use xj and some-
times xk. As a result it will find only weak interac-
tion between xi and xj and also between xi and xk,
even though the true interactions are much stronger.
If there are more than two correlated variables (again,
this is common in high-dimensional datasets), the in-
teraction can be spread out in tiny portions over all of
them, making it virtually impossible to detect.

As a consequence, before attempting to detect inter-
actions, we must eliminate correlations. This can be
achieved by a feature selection process, which removes
some of the variables. The final set of variables should
be a compromise between two goals: (1) The perfor-
mance of the unrestricted model should still be good,
ideally at least as good as before feature selection. (2)
Each variable should be important, i.e., if we remove
it from the set of features, the performance of the un-
restricted model should drop significantly. The second
criterion also gives us an estimate of the maximum
strength of interactions that we can detect: if the per-
formance of the unrestricted model drops by δ when
we remove xi, then we cannot expect the performance
of the best model restricted on xi and xj to drop by
more than δ. The intuition here is that removing an
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important variable is a stronger restriction than pro-
hibiting its interactions.

We use a variant of backward elimination (Guyon &
Elisseeff, 2003) for the feature selection process. The
main idea is to greedily eliminate all features (vari-
ables) whose removal either improves performance or
reduces performance by at most ∆ compared to perfor-
mance on the full-feature data set. In our experiments
we estimated d = StD(RMSE(F (x))), where F (x) is
the unrestricted model, before running feature selec-
tion and used ∆ = 3d.

The feature selection procedure is not stable—it de-
pends on the order in which we test each feature. For
example, if we consider two completely correlated vari-
ables xj and xk, we can remove xj and leave xk in the
set of the features. Or we can do exactly the reverse,
depending on which variable we tried to remove first
during feature selection. If there is a strong notion of
which features should stay in the data set after fea-
ture selection, i.e., if we want to test certain features
for interactions, the feature selection process should be
modified so that features of interest are not removed.

6. Complexity Issues

One concern about interaction detection is the need to
conduct a separate test for each interaction. If we want
to test for all possible interactions, in theory we need
O(nk) tests, where n is the number of variables and k is
the order of the interaction. However, such complexity
is unlikely to be required in practice. First, the fea-
ture selection process usually leaves a relatively small
set of features that makes it feasible to test all pairs
for possible interactions. Second, as noted by (Hooker,
2004), interactions possess an important monotonicity
property. A k-way interaction can only exist if all its
corresponding (k − 1)-interactions exist. This fact is
a straightforward consequence from the definition of
a k-way interaction. Hence after we have detected all
2-way interactions, we need to test for 3-way interac-
tions only for those triples of variables that have all
3 pairwise interactions present, and so on. As com-
plex interactions are rare in real datasets, in practice
we usually need only few tests for higher-order inter-
actions. Some domains do pose an exception, for ex-
ample, see our experiments on the kin8nm dataset.

7. Experiments

We have applied our approach to both synthetic and
real data sets. We can evaluate the performance of
our algorithm on synthetic data because we know the
true interactions; for real data we try to explain the

detected interactions based on the data set description.

In all our experiments we used 100 iterations of bag-
ging. Apart from that, Additive Groves requires two
parameters to be set: N (number of trees in a sin-
gle Grove) and α (fraction of train set cases in the
leaf, controls size of a single tree). We determined the
best values of α and N on a validation set and re-
ported the performance of Additive Groves with these
parameters on a test set. We ran each experiment for
the unrestricted model 10 times, using different ran-
dom seeds and therefore different bootstrap samples
for bagging. From these results we estimated the dis-
tribution of performance and then calculated the in-
teraction threshold using Equation 4. After that we
ran the experiment for each unrestricted model only
once. If the resulting estimate of the interaction was
above the threshold, we considered it to be evidence of
an interaction. Otherwise it was considered insignif-
icantly different from zero, indicating absence of an
interaction. Notice that due to variance, in the latter
case the estimate could be even negative, but should
always be close to zero.

7.1. Synthetic Data.

This data set was generated by a function that was
previously used in (Hooker, 2004).

F (x) = πx1x2

√
2x3 − sin−1(x4) +

log(x3 + x5) −
x9

x10

√

x7

x8
− x2x7 (5)

Variables x1, x2, x3, x6, x7, x9 are uniformly dis-
tributed between 0.0 and 1.0 and variables x4, x5, x8

and x10 are uniformly distributed between 0.6 and 1.0.
Training, validation and test set contain 1000 points
each. Best parameters were detected as α = 0.02 and
N = 8. Feature selection eliminated variables x6 (not
present in the function) and x8 (virtually no influence
on the response). For each of the 28 pairs of remaining
variables we constructed a restricted model and com-
pared it to the unrestricted model. Figure 1 shows the
interaction value for each variable pair as computed by
Equation 2. The dashed line shows the threshold. We
can see a group of strong interactions high above the
threshold — pairs (x1, x2), (x1, x3), (x2, x3), (x2, x7),
(x7, x9). All cases without interactions fall below the
threshold. There are also several weak interactions
in the data set: our estimate for (x9, x10) is barely
above the threshold and we failed to detect interac-
tions (x3, x5) and (x7, x10). By construction, x5 and
x10 have a small range and their interactions are not
significant. There is only one triple of variables with 3
pairwise interactions detected: (x1, x2, x3). A separate
test correctly reveals that there is a 3-way interaction
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between them. Note that this is the only higher-order
interaction that we need to test to conclude the full
analysis. The original formula has another 4-way in-
teraction, (x7, x8, x9, x10), but interactions of x8 and
x10 turned out to be very weak in the data, so the
model did not pick them up.
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Figure 1. Interaction estimates on synthetic data

For more realistic results, we generated a version of the
same data set with a 2 : 1 signal-to-noise ratio. Now
feature selection left only 5 variables: x1, x2, x3, x5,
x7, and results of interaction detection between those
variables were qualitatively the same as the correspon-
dent results for the data set without noise.

7.2. Real data sets

We have run experiments on 5 real data sets, 4 of
them are regression data sets from Lúıs Torgo’s col-
lection (Torgo, 2007), and the last one is a bird abun-
dance data set from the Cornell Lab of Ornithol-
ogy (Caruana et al., 2006). We used 4/5 of the data
for training, 1/10 for validation and 1/10 for testing.

California Housing. California Housing is a regres-
sion data set introduced in (Pace & Barry, 1997). It
describes how housing prices depend on different cen-
sus data variables. Parameters used: α = 0.0005,
N = 6. Feature selection identified six variables as im-
portant: longitude, latitude, housingMedianAge, to-
talRooms, population and medianIncome. (Hooker,
2007) describes the joint effect of latitude and longi-
tude on the response function. Our results confirm
that there is a clear strong interaction between these
two variables — the location effect on prices cannot
be split into the sum of latitude and longitude effects.
We have also found an evidence of interaction between
population and totalRooms (Figure 2).

Elevators. This data set originates from an air-
craft control task (Camacho, 1998). Parameters used:
α = 0.02 and N = 18. Feature selection left six vari-
ables: climbRate, p, q, absRoll, diffRollRate, Sa. We
detected strong pairwise interactions in the triple (ab-
sRoll, diffRollRate, Sa) and a separate test confirmed
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Figure 2. Interaction estimates for California Housing.

that this is indeed a strong 3-way interaction (Figure
3). No other interactions were found.
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Figure 3. Interaction estimates for Elevators data.

Kinematics (kin8nm). The kin8nm dataset from
the Delve repository (Rasmussen et al., 2003) describes
a simulation of an 8-link robot arm movement. Its in-
put variables correspond to the angular positions of
the joints and it is classified as highly non-linear by
its creators. Parameters used: α = 0.005 and N = 17.
Our analysis produced symmetrical results that reveal
the simulation nature of the dataset: all 8 features turn
out to be important, 2 of them do not interact with
any other features and the other 6 are connected into
a 6-way interaction (Figure 4). For brevity we show
only results of tests for 2-way interactions and the final
6-way interaction, but we have also conducted tests for
20 3-way, 15 4-way and 6 5-way interactions between
those 6 variables following the procedure described in
Section 6. All tests confirmed the presence of inter-
actions. kin8nm is the only data set where we had
to test for many higher-order interactions. This is a
property of the domain: the formula describing the
end position of the arm based on joints angles results
from interaction between most of the variables.

CompAct. Another dataset from the Delve repos-
itory, it describes the level of CPU activity in mul-
tiuser computer systems. Parameters used: α = 0.05
and N = 18. Feature selection left 9 variables: lread,
scall, sread, exec, wchar, pgout, ppgin, vflt, freeswap.
This data set turns out to be very additive. Although
there are many 2-way interactions, they all are rela-
tively small (Figure 5). The largest interactions are
(freeswap, wchar), describing the joint effect of the
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Figure 4. Interaction estimates for Kinematics (kin8nm) data.
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Figure 5. Interaction estimates for CPU Activity (CompAct) data set.

number of blocks available for swapping and system
write call speed, and (freeswap, vflt), describing an in-
teraction between the same available blocks variable
and the number of page faults.

House Finch Abundance Data. We tested our ap-
proach on a dataset with sightings of House Finches in
the North-Eastern US as introduced in (Caruana et al.,
2006). The strongest interactions that we detected are
between the following variables: (latitude, longitude,
elevation) and (year, latitude, longitude). The first
3-way interaction describes the effect of geographical
position which is expected to be non-additive. But the
interactions between year and location is less trivial.
Normally one would not expect that the effect of lat-
itude or longitude on bird abundance would be very
different in different years. However, it turns out that
during the decade covered by the data set, the pop-
ulation of House Finches was suffering from an eye-
disease that was spreading slowly and was responsi-
ble for changing the effect of geographical location on
bird abundance over time. Our results show that inter-
esting domain information like this can be discovered
with the help of interaction detection analysis.

8. Previous Work

Interaction detection is regularly performed as part of
statistical analysis (Christensen, 1996). Mostly para-
metric models are used where the analyst specifies
the interaction as a parametric term, or perhaps sev-
eral terms. In this setting interaction detection be-
comes a parameter estimation problem. More recently,

techniques have been developed to detect interactions
within semi-parametric models (Ruppert et al., 2003).

(Friedman & Popescu, 2005) developed tests for inter-
action detection for a very general class of prediction
models, including fully nonparametric models. Their
method makes use of the fact that in the absence of
an interaction between xi and xj the following holds:
∂F (x)2

∂xi∂xj
= ∂F (x)

∂xi
+ ∂F (x)

∂xj
. They estimate the partial

dependence functions (Friedman & Popescu, 2005) of
the model and then estimate the strength of an inter-
action as the difference between the right hand side
and the left hand side of the equation above, scaled by
variance in the response.

The drawback of that method is that in order to get
accurate estimates of the partial dependence function,
it relies on predictions for synthetic data points in
sparse regions of the input space. As a result, de-
cisions about presence of interactions can be made
because of spurious interactions that happen only in
those regions (Hooker, 2007). To demonstrate this ef-
fect, we generated two simple data sets for the func-
tion F (x) = x3

1 + x3
2. In the first data set both x1

and x2 are distributed uniformly between −10 and
10. For the second data set we took the same points
and removed those where both x1 and x2 were pos-
itive. Neither of the data sets contains interactions,
but the estimates produced by Friedman’s approach
using RuleFit (Friedman, 2005) were 0.0243 for the
first and 0.0824 for the second set. The presence of
an unpopulated region in the input data increased the
estimated strength of the presumed interaction by a
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factor of three.

In order to deal with this extrapolation problem,
(Friedman & Popescu, 2005) suggest comparing the es-
timated interaction strength produced by the method
described above with a similar estimate on the same
data, but for a different response function that does
not contain any interactions. However, our experi-
ments with RuleFit revealed several examples of unsat-
isfactory performance of this technique. For instance,
we generated 5 data sets with response function x2

1+x2
2

without noise and for each of them generated 50 sam-
ples from the null distribution. For 3 of those data
sets RuleFit produced results that indicated presence
of an interaction, i.e., the original estimate was further
from the mean of the null distribution than 3 standard
deviations. In contrast, our method produced a con-
fident estimation of the absence of interactions in all
the cases described above.

(Hooker, 2007; Hooker, 2004) suggests another ap-
proach, based on estimating orthogonal components of
the ANOVA decomposition. This method has higher
computational complexity because it requires generat-
ing a full grid of data points with all possible combina-
tions of values for those input variables that are tested
for interaction. To overcome the problem of extrap-
olations over unpopulated regions of the input space,
as well as problems caused by correlations, (Hooker,
2007) suggests imposing low weights for points from
low-density regions. Unfortunately, this requires the
use of external density estimation techniques and fur-
ther increases complexity of the method.

We take a model comparison approach to interaction
detection. In doing so, we do not need to calculate
partial dependence functions to estimate predictor ef-
fects and we avoid the associated problem of spurious
interactions from sparse regions. We believe this is a
more direct approach to interaction detection.

9. Discussion

We presented a novel technique for detecting statis-
tical interactions in complex data sets. The main
idea is to compare the predictive performance of un-
restricted models to restricted models, which do not
contain the to-be-tested interaction. Although this
idea is quite intuitive, there are significant practical
challenges and few algorithms will work in this frame-
work. We demonstrated that layered Additive Groves
can be used in this approach due to its high predictive
performance for both restricted and unrestricted mod-
els. Results on synthetic and real data indicate that
we can reliably identify interactions.
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