
1 

Let us now look at implementing graph 
algorithms in MapReduce. 

Why Graphs? 

• Discussion is based on the book and slides by 
Jimmy Lin and Chris Dyer 

• Analyze hyperlink structure of the Web 

• Social networks 
– Facebook friendships, Twitter followers, email 

flows, phone call patterns 

• Transportation networks 
– Roads, bus routes, flights 

• Interactions between genes, proteins, etc. 

2 

What is a Graph? 

• G = (V, E) 
– V: set of vertices (nodes) 

– E: set of edges (links), 𝐸 ⊆ 𝑉 × 𝑉 

• Edges can be directed or undirected 

• Graph might have cycles or not (acyclic graph) 

• Nodes and edges can be annotated 
– E.g., social network: node has demographic 

information like age; edge has type of relationship 
like friend or family 

3 

Graph Problems 

• Graph search and path planning 

– Find driving directions from A to B 

– Recommend possible friends in social network 

– How to route IP packets or delivery trucks 

• Graph clustering 

– Identify communities in social networks 

– Partition large graph to parallelize graph processing 

• Minimum spanning trees 

– Connected graph of minimum total edge weight 

4 

More Graph Problems 

• Bipartite graph matching 
– Match nodes on “left” with nodes on “right” side 

– E.g., match job seekers and employers, singles looking 
for dates, papers with reviewers 

• Maximum flow 
– Maximum traffic between source and sink 

– E.g., optimize transportation networks 

• Finding “special” nodes 
– E.g., disease hubs, leader of a community, people with 

influence 

5 

Graph Representations 

• Usually one of these two: 

– Adjacency matrix 

– Adjacency list 

6 



Adjacency Matrix 

• Matrix M of size |N| by |N| 
– Entry M(i,j) contains weight of edge from node i to 

node j; 0 if no edge 

7 

1 2 3 4 

1 0 1 0 1 

2 1 0 1 1 

3 1 0 0 0 

4 1 0 1 0 

1 

2 

3 

4 

Example source: Jimmy Lin 

Properties 

• Advantages 

– Easy to manipulate with linear algebra 

• MM: entry (i,j) = number of two-step paths to go from 
node i to node j 

– Operation on outlinks and inlinks corresponds to 
iteration over rows and columns 

• Disadvantage 

– Huge space overhead for sparse matrix 

– E.g., Facebook friendship graph 

8 

Adjacency List 

• Compact row-wise representation of matrix 

9 

1 2 3 4 

1 0 1 0 1 

2 1 0 1 1 

3 1 0 0 0 

4 1 0 1 0 

1: 2, 4 
2: 1, 3, 4 
3: 1 
4: 1, 3 

Properties 

• Advantages 

– More space-efficient 

– Still easy to compute over outlinks for each node 

• Disadvantage 

– Difficult to compute over inlinks for each node 

 

• Note: remember inverse Web graph 
discussion 

10 

Parallel Breadth-First Search 

• Case study: single-source shortest path problem 
– Find the shortest path from a source node s to all 

other nodes in the graph 

• For non-negative edge weights, Dijkstra’s 
algorithm is the classic sequential solution 
– Initialize distance d[s]=0, all others to  

– Maintain priority queue of nodes sorted by distance 

– Remove first node u from queue and update d[v] for 
each node v in adjacency list of u if (1) v is in queue 
and (2) d[v] > d[u]+weight(u,v) 

11 

Dijkstra’s Algorithm Example 

12 

0 

 

 

 

 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

Example from CLR 

Example from Jimmy Lin’s 
presentation 



Dijkstra’s Algorithm Example 

13 

0 

10 

5 

 

 

Example from CLR 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

Dijkstra’s Algorithm Example 

14 

0 

8 

5 

14 

7 

Example from CLR 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

Dijkstra’s Algorithm Example 

15 

0 

8 

5 

13 

7 

Example from CLR 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

Dijkstra’s Algorithm Example 

16 

0 

8 

5 

9 

7 

Example from CLR 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

Dijkstra’s Algorithm Example 

17 

0 

8 

5 

9 

7 

Example from CLR 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

Parallel Single-Source Shortest Path 

• Priority queue is core element of Dijkstra’s 
algorithm 

– No global shared data structure in MapReduce 

• Dijkstra’s algorithm proceeds sequentially, 
node by node 

– Taking non-min node could affect correctness of 
algorithm 

• Solution: perform parallel breadth-first search 

18 



Parallel Breadth-First Search 

• Start at source s 

• In first round, find all nodes reachable in one 
hop from s 

• In second round, find all nodes reachable in 
two hops from s, and so on 

• Keep track of min distance for each node 

– Also record corresponding path 

• Iterations stop when no shorter path possible 

19 

BFS Visualization 

20 

Example from Jimmy Lin’s 
presentation 

n0 

n3 
n2 

n1 

n7 

n6 

n5 

n4 

n9 

n8 

MapReduce Code: Single Iteration 

21 

map(nid n, node N)  // N stores node’s current min distance and adjacency list 
  d = N.distance 
  emit(nid n, N)  // Pass along graph structure 
  for all nid m in N.adjacencyList do 
    emit(nid m, d + w(n,m)) // Emit distances to reachable nodes 

reduce(nid m, [d1,d2,…]) 
  dMin = ; M =  
  for all d in [d1,d2,…] do 
    if isNode(d) then 
      M = d   // Recover graph structure 
    else if d < dMin then // Look for min distance in list 
      dMin = d 
  if dMin < M.distance // Needed to avoid overwriting of source node’s distance 
    M.distance = dMin // Update node’s shortest distance 
  emit(nid m, node M) 

Overall Algorithm 

• Need driver program to control the iterations 
• Initialization: SourceNode.distance = 0, all others 

have distance= 
• When to stop iterating? 
• If all edges have weight 1, can stop as soon as no 

node has  distance any more 
– Can detect this with Hadoop counter 

• Number of iterations depends on graph diameter 
– In practice, many networks show the small-world 

phenomenon, e.g., six degrees of separation 

22 

Dealing With Diverse Edge Weights 

• “Detour” path can be shorter than “direct” connection, 
hence cannot stop as soon as all node distances are 
finite 

• Stop when no node’s shortest distance changes any 
more 
– Can be detected with Hadoop counter 
– Worst case: |N| iterations 

23 

10 

n1 

n2 

n3 

n4 

n5 

n6 n7 

n8 

n9 

1 

1 
1 

1 

1 

1 

1 

1 

Example from Jimmy Lin’s 
presentation 

MapReduce Algorithm Analysis 

• Brute-force approach that performs many 
irrelevant computations 

– Computes distances for nodes that still have 
infinity distance 

– Repeats previous computations inside “search 
frontier” 

• Dijkstra’s algorithm only explores the search 
frontier, but needs the priority queue 

24 



Typical Graph Processing in 
MapReduce 

• Graph represented by adjacency list per node, 
plus extra node data 

• Map works on a single node u 
– Node u’s local state and links only 

• Node v in u’s adjacency list is intermediate key 
– Passes results of computation along outgoing edges 

• Reduce combines partial results for each 
destination node 

• Map also passes graph itself to reducers 
• Driver program controls execution of iterations 

25 

PageRank Introduction 

• Popularized by Google for evaluating the quality 
of a Web page 

• Based on random Web surfer model 

– Web surfer can reach a page by jumping to it or by 
following the link from another page pointing to it 

– Modeled as random process 

• Intuition: important pages are linked from many 
other (important) pages 

– Goal: find pages with greatest probability of access 

26 

PageRank Definition 

• PageRank of page n: 

– 𝑃 𝑛 = 𝛼
1

|𝑉|
+ (1 − 𝛼) 

𝑃(𝑚)

𝐶(𝑚)𝑚∈𝐿(𝑛)  

– |V| is number of pages (nodes) 

–  is probability of random jump 

– L(n) is the set of pages linking to n 

– P(m) is m’s PageRank 

– C(m) is m’s out-degree 

• Definition is recursive 
– Compute by iterating until convergence (fixpoint) 

27 

Computing PageRank 

• Similar to BFS for shortest path 

• Computing P(n) only requires P(m) and C(m) 
for all pages linking to n 

– During iteration, distribute P(m) evenly over 
outlinks 

– Then add contributions over all of n’s inlinks 

• Initialization: any probability distribution over 
the nodes 

28 

PageRank Example 

n1 (0.2) 

n4 (0.2) 

n3 (0.2) 
n5 (0.2) 

n2 (0.2) 

0.1 

0.1 

0.2 0.2 

0.1 0.1 

0.066 0.066 
0.066 

n1 (0.066) 

n4 (0.3) 

n3 (0.166) 
n5 (0.3) 

n2 (0.166) Iteration 1 

Source:  Jimmy Lin’s 
presentation 

29 

PageRank Example 

n1 (0.066) 

n4 (0.3) 

n3 (0.166) 
n5 (0.3) 

n2 (0.166) 

0.033 

0.033 

0.3 0.166 

0.083 0.083 

0.1 0.1 
0.1 

n1 (0.1) 

n4 (0.2) 

n3 (0.183) 
n5 (0.383) 

n2 (0.133) Iteration 2 

30 



PageRank in MapReduce 

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5] 

n2 n4 n3 n5 n1 n2 n3 n4 n5 

n2 n4 n3 n5 n1 n2 n3 n4 n5 

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5] 

Map 

Reduce 

31 

MapReduce Code 

32 

map(nid n, node N)  // N stores node’s current PageRank and adjacency list 
  p = N.pageRank / |N.adjacencyList| 
  emit(nid n, N)  // Pass along graph structure 
  for all nid m in N.adjacencyList do 
    emit(nid m, p)  // Pass PageRank mass to neighbors 

reduce(nid m, [p1,p2,…]) 
  s=0; M =  
  for all p in [p1,p2,…] do 
    if isNode(p) then 
      M = p   // Recover graph structure 
    else 
      s += p   // Sum incoming PageRank contributions 
  M.pageRank = /|V| + (1-)s 
  emit(nid m, node M) 

Dangling Nodes 

• Consider node x with no outgoing links 

– P(x) is not passed to any other node, hence gets “lost” 
in the Map phase 

• Need to correct for the missing probability mass 

– Model: assume dangling page links to all pages 

– Mathematically equivalent to 

𝑃 𝑛 = 𝛼
1

|𝑉|
+ 1 − 𝛼

𝛿

𝑉
+  

𝑃 𝑚

𝐶 𝑚
𝑚∈𝐿 𝑛

 

– : missing PageRank mass due to dangling nodes 

33 

PageRank with Dangling Nodes 

• Challenge: need , which is the sum over the 
current page ranks of dangling nodes 

– MR-job1: compute  

– MR-job2: compute new PageRank using  

• Alternative computations? 

– Order inversion pattern to make sure  is available 
in all reduce tasks 

34 

Number of Iterations 

• PageRank computation iterates until 
convergence 

– PageRank of all nodes no longer changes (or is 
within small tolerance) 

– Needs to be checked by driver 

• Original PageRank paper: 52 iterations until 
convergence on graph with 322 million edges 

– Highly dependent on data properties 

35 

General Graph Processing Issues 

• Sequential algorithms often use global data 
structure for efficiency 

• In MapReduce with adjacency list 
representation, information can only be 
passed locally to or from direct neighbors 
– But can pre-compute other data structures, e.g., 

two-hop neighbors 

• Presented algorithms have Map output of 
O(#edges), which works well for sparse graphs 

36 



General Graph Processing Issues 

• Partitioning of graph into chunks strongly 
affects effectiveness of combiners 
– Often best to keep well-connected components 

together 

• Numerical stability for large graphs 
– PageRank of individual page might be so small 

that it underflows standard floating point 
representation 

– Can work with logarithm-transformed numbers 
instead 

37 


