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Data Mining Techniques:
Cluster Analysis

Mirek Riedewald

Many slides based on presentations by
Han/Kamber, Tan/Steinbach/Kumar, and Andrew 

Moore

Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation
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What is Cluster Analysis?

• Cluster: a collection of data objects
– Similar to one another within the same cluster

– Dissimilar to the objects in other clusters

• Unsupervised learning: usually no training set 
with known “classes”

• Typical applications
– As a stand-alone tool to get insight into data 

properties

– As a preprocessing step for other algorithms
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What is Cluster Analysis?
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Inter-cluster 

distances are 
maximized

Intra-cluster 

distances are 
minimized

Rich Applications, Multidisciplinary 
Efforts 

• Pattern Recognition

• Spatial Data Analysis

• Image Processing

• Data Reduction

• Economic Science
– Market research

• WWW
– Document classification

– Weblogs: discover groups of similar access patterns
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Clustering precipitation in Australia

Examples of Clustering Applications

• Marketing: Help marketers discover distinct groups in 
their customer bases, and then use this knowledge to 
develop targeted marketing programs

• Land use: Identification of areas of similar land use in 
an earth observation database

• Insurance: Identifying groups of motor insurance policy 
holders with a high average claim cost

• City-planning: Identifying groups of houses according 
to their house type, value, and geographical location

• Earth-quake studies: Observed earth quake epicenters 
should be clustered along continent faults
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Quality: What Is Good Clustering?

• Cluster membership  objects in same class

• High intra-class similarity, low inter-class
similarity

– Choice of similarity measure is important

• Ability to discover some or all of the hidden 
patterns

– Difficult to measure without ground truth
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Notion of a Cluster can be Ambiguous
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How many clusters?

Four ClustersTwo Clusters

Six Clusters

Distinctions Between Sets of Clusters

• Exclusive versus non-exclusive
– Non-exclusive clustering: points may belong to 

multiple clusters

• Fuzzy versus non-fuzzy
– Fuzzy clustering: a point belongs to every cluster with 

some weight between 0 and 1
• Weights must sum to 1

• Partial versus complete
– Cluster some or all of the data

• Heterogeneous versus homogeneous
– Clusters of widely different sizes, shapes, densities
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Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation

10

Distance

• Clustering is inherently connected to question 
of (dis-)similarity of objects

• How can we define similarity between 
objects?
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Similarity Between Objects

• Usually measured by some notion of distance

• Popular choice: Minkowski distance

– q is a positive integer

• q = 1: Manhattan distance

• q = 2: Euclidean distance:
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Metrics

• Properties of a metric
– d(i,j)  0

– d(i,j) = 0 if and only if i=j

– d(i,j) = d(j,i)

– d(i,j)  d(i,k) + d(k,j)

• Examples: Euclidean distance, Manhattan distance

• Many other non-metric similarity measures exist

• After selecting the distance function, is it now clear 
how to compute similarity between objects?
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Challenges

• How to compute a distance for categorical 
attributes

• An attribute with a large domain often 
dominates the overall distance

– Weight and scale the attributes like for k-NN

• Curse of dimensionality
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Curse of Dimensionality

• Best solution: remove any attribute that is 
known to be very noisy or not interesting

• Try different subsets of the attributes and 
determine where good clusters are found
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Nominal Attributes

• Method 1: work with original values

– Difference = 0 if same value, difference = 1 
otherwise

• Method 2: transform to binary attributes

– New binary attribute for each domain value

– Encode specific domain value by setting 
corresponding binary attribute to 1 and all others 
to 0
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Ordinal Attributes

• Method 1: treat as nominal

– Problem: loses ordering information

• Method 2: map to [0,1]

– Problem: To which values should the original 
values be mapped?

– Default: equi-distant mapping to [0,1]
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Scaling and Transforming Attributes

• Sometimes it might be necessary to transform 
numerical attributes to [0,1] or use another 
normalizing transformation, maybe even non-
linear (e.g., logarithm)

• Might need to weight attributes differently

• Often requires expert knowledge or trial-and-
error
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Other Similarity Measures

• Special distance or similarity measures for 
many applications

– Might be a non-metric function

• Information retrieval

– Document similarity based on keywords

• Bioinformatics

– Gene features in micro-arrays
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Calculating Cluster Distances

• Single link = smallest distance between an element in one 
cluster and an element in the other: dist(Ki, Kj) = min(xip, 
xjq)

• Complete link = largest distance between an element in 
one cluster and an element in the other: dist(Ki, Kj) = 
max(xip, xjq)

• Average distance between an element in one cluster and an 
element in the other: dist(Ki, Kj) = avg(xip, xjq)

• Distance between cluster centroids: dist(Ki, Kj) = d(mi, mj)
• Distance between cluster medoids: dist(Ki, Kj) = dist(xmi, xmj)

– Medoid: one chosen, centrally located object in the cluster
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Cluster Centroid, Radius, and Diameter

• Centroid: the “middle” of a cluster C

• Radius: square root of average distance from any 
point of the cluster to its centroid

• Diameter: square root of average mean squared 
distance between all pairs of points in the cluster
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Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation
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Partitioning Algorithms: Basic Concept

• Construct a partition of a database D of n objects into a 
set of K clusters, s.t. sum of squared distances to 
cluster “representative” m is minimized

• Given a K, find partition of K clusters that optimizes the 
chosen partitioning criterion
– Globally optimal: enumerate all partitions
– Heuristic methods

• K-means (’67): each cluster represented by its centroid
• K-medoids (’87): each cluster represented by one of the objects in 

the cluster
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K-means Clustering

• Each cluster is associated with a centroid
• Each object is assigned to the cluster with the 

closest centroid

1. Given K, select K random objects as initial 
centroids

2. Repeat until centroids do not change
1. Form K clusters by assigning every object to its 

nearest centroid
2. Recompute centroid of each cluster

24



5

K-Means Example
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Overview of K-Means Convergence
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K-means Questions

• What is it trying to optimize?

• Will it always terminate?

• Will it find an optimal clustering?

• How should we start it?

• How could we automatically choose the 
number of centers?

….we’ll deal with these questions next
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K-means Clustering Details

• Initial centroids often chosen randomly

– Clusters produced vary from one run to another

• Distance usually measured by Euclidean 
distance, cosine similarity, correlation, etc.

• Comparably fast algorithm: O( n * K * I * d )

– n = number of objects

– I = number of iterations

– d = number of attributes
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Evaluating K-means Clusters

• Most common measure: Sum of Squared Error 
(SSE)
– For each point, the error is the distance to the nearest 

centroid

– mi = centroid of cluster Ci

• Given two clusterings, choose the one with the 
smallest error

• Easy way to reduce SSE: increase K
– In practice, large K not interesting

29
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K-means Convergence

• (1) Assign each x to its nearest center (minimizes SSE for fixed 
centers)

• (2) Choose centroid of all points in the same cluster as cluster 
center (minimizes SSE for fixed clusters)

• Cycle through steps (1) and (2) = K-means algorithm

• Algorithm terminates when neither (1) nor (2) results in change of 
configuration
– Finite number of ways of partitioning n records into K groups
– If the configuration changes on an iteration, it must have improved SSE
– So each time the configuration changes it must go to a configuration it 

has never been to before
– So if it tried to go on forever, it would eventually run out of 

configurations
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Will it Find the Optimal Clustering?
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Importance of Initial Centroids
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Will It Find The Optimal Clustering 
Now?
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Importance of Initial Centroids
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Problems with Selecting Initial 
Centroids

• Probability of starting with exactly one initial 
centroid per ‘real’ cluster is very low

– K selected for algorithm might be different from 
inherent K of the data

– Might randomly select multiple initial objects from 
same cluster

• Sometimes initial centroids will readjust 
themselves in the ‘right’ way, and sometimes 
they don’t
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

• Multiple runs
– Helps, but probability is not on your side

• Sample and use hierarchical clustering to determine 
initial centroids

• Select more than k initial centroids and then select 
among these the initial centroids
– Select those that are most widely separated

• Postprocessing
– Eliminate small clusters that may represent outliers
– Split clusters with high SSE
– Merge clusters that are ‘close’ and have low SSE

40

Limitations of K-means

• K-means has problems when clusters are of 
differing 

– Sizes

– Densities

– Non-globular shapes

• K-means has problems when the data contains 
outliers

41

Limitations of K-means: Differing Sizes

42

Original Points K-means (3 Clusters)
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Limitations of K-means: Differing 
Density

43

Original Points K-means (3 Clusters)

Limitations of K-means: Non-globular 
Shapes
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Original Points K-means (2 Clusters)

Overcoming K-means Limitations
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Original Points K-means Clusters

One solution is to use many clusters.

Find parts of clusters, then put them together.

Overcoming K-means Limitations

46

Original Points K-means Clusters

Overcoming K-means Limitations

47

Original Points K-means Clusters

K-Means and Outliers

• K-means algorithm is sensitive to outliers
– Centroid is average of cluster members

– Outlier can dominate average computation

• Solution: K-medoids
– Medoid = most centrally located real object in a 

cluster

– Algorithm similar to K-means, but finding medoid is 
much more expensive
• Try all objects in cluster to find the one that minimizes SSE, 

or just try a few randomly to reduce cost

48



9

Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation
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Hierarchical Clustering 

• Produces a set of nested clusters organized as 
a hierarchical tree

• Visualized as a dendrogram
– Tree-like diagram that records the sequences of 

merges or splits
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number 
of clusters

– Any number of clusters can be obtained by 
‘cutting’ the dendogram at the proper level

• May correspond to meaningful taxonomies

– Example in biological sciences (e.g., animal 
kingdom, phylogeny reconstruction, …)
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Hierarchical Clustering

• Two main types of hierarchical clustering

– Agglomerative:

• Start with the given objects as individual clusters

• At each step, merge the closest pair of clusters until 
only one cluster (or K clusters) left

– Divisive:

• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a 
single object (or there are K clusters)

52

Agglomerative Clustering Algorithm

• More popular hierarchical clustering technique
• Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data object be a cluster
3. Repeat until only a single cluster remains

1. Merge the two closest clusters
2. Update the proximity matrix

• Key operation: computation of the proximity of 
two clusters
– Different approaches to defining the distance 

between clusters distinguish the different algorithms

53

Starting Situation

• Clusters of individual 
objects, proximity matrix

54

...
p1 p2 p3 p4 p9 p10 p11 p12

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix



10

Intermediate Situation

• Some clusters are merged

55

...
p1 p2 p3 p4 p9 p10 p11 p12
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Intermediate Situation

• Merge closest clusters (C2 and 
C5) and update proximity matrix 
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...
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After Merging

• How do we update the 
proximity matrix?
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Defining Cluster Distance

• Min: clusters near each other

• Max: low diameter

• Avg: more robust against outliers

• Distance between centroids

58




Strength of MIN

59

Original Points Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN

60

Original Points Two Clusters

• Sensitive to noise and outliers
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Strength of MAX

61

Original Points Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX
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Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters

Hierarchical Clustering: Average

• Compromise between Single and Complete 
Link

• Strengths

– Less susceptible to noise and outliers

• Limitations

– Biased towards globular clusters

63

Cluster Similarity: Ward’s Method

• Distance of two clusters is based on the 
increase in squared error when two clusters 
are merged
– Similar to group average if distance between 

objects is distance squared

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Hierarchical analogue of K-means
– Can be used to initialize K-means

64

Hierarchical Clustering: Comparison
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Time and Space Requirements

• O(n2) space for proximity matrix 

– n = number of objects

• O(n3) time in many cases

– There are n steps and at each step the proximity 
matrix must be updated and searched

– Complexity can be reduced to O(n2 log(n) ) time 
for some approaches

66
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Hierarchical Clustering: Problems and 
Limitations

• Once a decision is made to combine two 
clusters, it cannot be undone

• No objective function is directly minimized

• Different schemes have problems with one or 
more of the following:
– Sensitivity to noise and outliers

– Difficulty handling different sized clusters and 
convex shapes

– Breaking large clusters

67

Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation
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Density-Based Clustering Methods

• Clustering based on density of data objects in 
a neighborhood

– Local clustering criterion

• Major features:

– Discover clusters of arbitrary shape

– Handle noise

– Need density parameters as termination condition

75

DBSCAN: Basic Concepts

• Two parameters:
– Eps: Maximum radius of the neighborhood

• NEps(q): {p  D | dist(q,p)  Eps}

– MinPts: Minimum number of points in an Eps-
neighborhood of that point

• A point p is directly density-reachable from a 
point q w.r.t. Eps and MinPts if 
– p belongs to NEps(q)

– Core point condition:
|NEps(q)|  MinPts

76

p

q

MinPts = 5

Density-Reachable, Density-Connected

• A point p is density-reachable from a 
point q w.r.t. Eps, MinPts if there is a 
chain of points
q = p1,p2,…, pn = p
such that pi+1 is directly density-
reachable from pi

• A point p is density-connected to a 
point q w.r.t. Eps, MinPts if there is a 
point o such that both p and q are 
density-reachable from o w.r.t. Eps
and MinPts

• Cluster = set of density-connected 
points

77
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p1
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DBSCAN: Classes of Points

• A point is a core point if it has more than a 
specified number of points (MinPts) within Eps

– At the interior of a cluster

• A border point has fewer than MinPts within Eps, 
but is in the neighborhood of a core point

– At the outer surface of a cluster

• A noise point is any point that is not a core point 
or a border point

– Not part of any cluster
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DBSCAN: Core, Border, and Noise 
Points

DBSCAN Algorithm

• Repeat until all points have been processed
– Select a point p
– If p is core point then

• Retrieve and remove all points density-reachable from p w.r.t. Eps
and MinPts; output them as a cluster

• “Discards” all noise points (how?)
• Discovers clusters of arbitrary shape
• Fairly robust against noise
• Runtime: O(n2), space: O(n)

– O(n * timeToFindPointsInNeighborhood)
• Can be O(n log(n)) with spatial index
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DBSCAN: Core, Border and Noise 
Points
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Original Points Point types: core, 

border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

82

Original Points Clusters

When DBSCAN Does NOT Work Well

83

Original Points

(MinPts=4, large Eps)

(MinPts=4, small Eps)

• Varying densities

• High-dimensional data

DBSCAN: Determining Eps and MinPts

• Idea: for points in a cluster, their k-th nearest neighbors are at roughly the 
same distance
– Noise points have the k-th nearest neighbor at farther distance

• Plot the sorted distance of every point to its k-th nearest neighbor
– Choose Eps where sharp change occurs
– MinPts = k

• k too large: small clusters labeled as noise
• k too small: small groups of outliers labeled as cluster

84
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DBSCAN: Sensitive to Parameters

85

Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation

95

Clustering High-Dimensional Data

• Many applications: text documents, DNA micro-array 
data

• Major challenges: 
– Irrelevant dimensions may mask clusters
– Curse of dimensionality for distance computation
– Clusters may exist only in some subspaces

• Methods
– Feature transformation, e.g., PCA and SVD

• Some useful only when features are highly correlated/redundant

– Feature selection: wrapper or filter approaches
– Subspace-clustering: find clusters in all subspaces

• CLIQUE

96

Curse of Dimensionality

• Graphs on the right adapted from 
Parsons et al. KDD Explorations ’04

• Data in only one dimension is 
relatively packed

• Adding a dimension “stretches” the  
objects across that dimension, 
moving  them further apart
– High-dimensional data is very sparse

• Distance measure becomes 
meaningless
– For many distributions, distances 

between objects become more similar 
in high dimensions

97

Why Subspace Clustering?

• Adapted from Parsons et al. SIGKDD Explorations ‘04

98

CLIQUE (Clustering In QUEst) 

• Automatically identifies clusters in sub-spaces
• Exploits monotonicity property

– If a set of points forms a dense cluster in d dimensions, they 
also form a cluster in any subset of these dimensions
• A region is dense if the fraction of data points in the region exceeds 

the input model parameter 
• Sound familiar? Apriori algorithm...

• Algorithm is both density-based and grid-based
– Partitions each dimension into the same number of equal-

length intervals
– Partitions an m-dimensional data space into non-overlapping 

rectangular units
– Cluster = maximal set of connected dense units within a 

subspace

99
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CLIQUE Algorithm

• Find all dense regions in 1-dim space for each attribute. 
This is the set of dense 1-dim cells. Let k=1.

• Repeat until there are no dense k-dim cells
– k = k+1
– Generate all candidate k-dim cells from dense (k-1)-dim 

cells
– Eliminate cells with fewer than  points

• Find clusters by taking union of all adjacent, high-
density cells of same dimensionality

• Summarize each cluster using a small set of inequalities 
that describe the attribute ranges of the cells in the 
cluster

100 101

S
a
la

ry
 

(1
0

,0
0

0
)

20 30 40 50 60
age

5
4

3
1

2
6

7
0

20 30 40 50 60
age

5
4

3
1

2
6

7
0

V
a
ca

ti
o
n

(w
ee

k
)

age

V
a
ca

ti
o
n

30 50

 = 3

Compute intersection
of dense age-salary
and age-vacation
regions

Strengths and Weaknesses of CLIQUE

• Strengths
– Automatically finds subspaces of the highest dimensionality that 

contain high-density clusters
– Insensitive to the order of objects in input and does not 

presume some canonical data distribution
– Scales linearly with input size and has good scalability with 

number of dimensions

• Weaknesses
– Need to tune grid size and density threshold
– Each point can be a member of many clusters
– Can still have high mining cost (inherent problem for subspace 

clustering)
– Same density threshold for low and high dimensionality
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Cluster Analysis Overview

• Introduction

• Foundations: Measuring Distance (Similarity)

• Partitioning Methods: K-Means

• Hierarchical Methods

• Density-Based Methods

• Clustering High-Dimensional Data

• Cluster Evaluation

103

Cluster Validity on Test Data

104

Cluster Validity 

• Clustering: usually no ground truth available

• Problem: “clusters are in the eye of the 
beholder…”

• Then why do we want to evaluate them?

– To avoid finding patterns in noise

– To compare clustering algorithms

– To compare two sets of clusters

– To compare two clusters
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Clusters found in Random Data
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Measuring Cluster Validity Via 
Correlation

• Two matrices 
– Similarity Matrix
– “Incidence” Matrix

• One row and one column for each object
• Entry is 1 if the associated pair of objects belongs to the same cluster, 

otherwise 0

• Compute correlation between the two matrices
– Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

• High correlation: objects close to each other tend to be in 
same cluster

• Not a good measure when clusters can be non-globular and 
intertwined
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Measuring Cluster Validity Via 
Correlation
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Similarity Matrix for Cluster Validation

• Order the similarity matrix with respect to cluster labels 
and inspect visually
– Block-diagonal matrix for well-separated clusters
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• Clusters in random data are not so crisp
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• Clusters in random data are not so crisp
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Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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Similarity Matrix for Cluster Validation
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Sum of Squared Error

• For fixed number of clusters, lower SSE indicates better 
clustering
– Not necessarily true for non-globular, intertwined clusters

• Can also be used to estimate the number of clusters
– Run K-means for different K, compare SSE
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Comparison to Random Data or 
Clustering

• Need a framework to interpret any measure
– E.g., if measure = 10, is that good or bad?

• Statistical framework for cluster validity
– Compare cluster quality measure on random data or 

random clustering to those on real data
• If value for random setting is unlikely, then cluster results are 

valid (cluster = non-random structure)

• For comparing the results of two different sets of 
cluster analyses, a framework is less necessary
– But: need to know whether the difference between 

two index values is significant
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Statistical Framework for SSE

• Example: found 3 clusters, got SSE = 0.005 for given data set
• Compare to SSE of 3 clusters in random data

– Histogram: SSE of 3 clusters in 500 sets of random data points (100 points 
from range 0.2…0.8 for x and y)

– Estimate mean, stdev for SSE on random data
– Check how many stdev away from mean the real-data SSE is
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Statistical Framework for Correlation

• Compare correlation of incidence and 
proximity matrices for well-separated data 
versus random data

119

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Corr = - 0.9235 Corr = - 0.5810

Random data

Cluster Cohesion and Separation

• Cohesion: how closely related are objects in a cluster
– Can be measured by SSE (mi = centroid of cluster i):

• Separation: how well-separated are clusters
– Can be measured by between-cluster sum of squares (m = 

overall mean):
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Cohesion and Separation Example

• Note: BSS + SSE = constant
– Minimize SSE  get max. BSS
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Silhouette Coefficient

• Combines ideas of both cohesion and separation
• For an individual object i

– Calculate ai = average distance of i to the objects in its 
cluster

– Calculate bi = average distance of i to objects in 
another cluster C, choosing the C that minimizes bi

– Silhouette coefficient of i = (bi-ai) / max{ai,bi}
• Range: [-1,1], but typically between 0 and 1
• The closer to 1, the better

• Can calculate the Average Silhouette width over 
all objects
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Final Comment on Cluster Validity

“The validation of clustering structures is the 
most difficult and frustrating part of cluster 
analysis. 

Without a strong effort in this direction, 
cluster analysis will remain a black art 
accessible only to those true believers who 
have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes
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Summary

• Cluster analysis groups objects based on their 
similarity  (or distance) and has wide 
applications

• Measure of similarity (or distance) can be 
computed for all types of data

• Many different types of clustering algorithms
– Discover different types of clusters

• Many measures of clustering quality, but 
absence of ground truth always a challenge
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