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Data Mining Techniques:
Frequent Patterns in Sets and 

Sequences

Mirek Riedewald

Some slides based on presentations by
Han/Kamber and Tan/Steinbach/Kumar

Frequent Pattern Mining Overview

• Basic Concepts and Challenges

• Efficient and Scalable Methods for Frequent 
Itemsets and Association Rules

• Pattern Interestingness Measures

• Sequence Mining
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What Is Frequent Pattern Analysis?

• Find patterns (itemset, sequence, structure, etc.) that 
occur frequently in a data set

• First proposed for frequent itemsets and association 
rule mining

• Motivation: Find inherent regularities in data
– What products were often purchased together?
– What are the subsequent purchases after buying a PC?
– What kinds of DNA are sensitive to a new drug?

• Applications
– Market basket analysis, cross-marketing, catalog design, 

sale campaign analysis, Web log (click stream) analysis, 
DNA sequence analysis
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Association Rule Mining

• Given a set of transactions, find rules that will predict 
the occurrence of an item based on the occurrences of 
other items in the transaction
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Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules

{Diaper}  {Beer},

{Milk, Bread}  {Eggs,Coke},

{Beer, Bread}  {Milk},

Implication means co-occurrence, 

not causality!

Definition: Frequent Itemset

• Itemset
– A collection of one or more items

• Example: {Milk, Bread, Diaper}

– k-itemset: itemset that contains k items

• Support count ()
– Frequency of occurrence of an itemset
– E.g., ({Milk, Bread, Diaper}) = 2 

• Support (s)
– Fraction of transactions that contain an 

itemset
– E.g., s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset
– An itemset whose support is greater than 

or equal to a minsup threshold
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TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Definition: Association Rule

• Association Rule = implication 
expression of the form XY, 
where X and Y are itemsets
– Ex.: {Milk, Diaper}  {Beer}

• Rule Evaluation Metrics
– Support (s) = P(XY) 

• Estimated by fraction of 
transactions that contain both X 
and Y

– Confidence (c) = P(Y| X)
• Estimated by fraction of 

transactions that contain X and Y 
among all transactions containing 
X
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TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example: Beer}Diaper,Milk{ 
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Association Rule Mining Task

• Given a transaction database DB, find all rules 
having support ≥ minsup and confidence ≥ 
minconf

• Brute-force approach:
– List all possible association rules

– Compute support and confidence for each rule

– Remove rules that fail the minsup or minconf
thresholds

– Computationally prohibitive!
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Mining Association Rules

Observations:
• All the above rules are binary partitions of the same itemset

{Milk, Diaper, Beer}
• Rules originating from the same itemset have identical support but 

can have different confidence
• Thus, we may decouple the support and confidence requirements
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TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example rules:

{Milk,Diaper}  {Beer} (s=0.4, c=0.67)

{Milk,Beer}  {Diaper} (s=0.4, c=1.0)

{Diaper,Beer}  {Milk} (s=0.4, c=0.67)

{Beer}  {Milk,Diaper} (s=0.4, c=0.67) 

{Diaper}  {Milk,Beer} (s=0.4, c=0.5) 

{Milk}  {Diaper,Beer} (s=0.4, c=0.5)

Mining Association Rules

• Two-step approach: 

1. Frequent Itemset Generation

• Generate all itemsets that have support  minsup

2. Rule Generation

• Generate high-confidence rules from each frequent 
itemset, where each rule is a binary partitioning of the 
frequent itemset

• Frequent itemset generation is still 
computationally expensive
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Frequent Itemset Generation
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null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 

are 2d possible 

candidate itemsets

Frequent Itemset Generation

• Brute-force approach: 
– Each itemset in the lattice is a candidate frequent itemset
– Count the support of each candidate by scanning the 

database
– Match each transaction against every candidate
– Complexity  O(N*M*w) => expensive since M=2d
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TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w

Computational Complexity

• Given d unique items, total number of itemsets = 2d

• Total number of possible association rules?
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Frequent Pattern Mining Overview

• Basic Concepts and Challenges

• Efficient and Scalable Methods for Frequent 
Itemsets and Association Rules

• Pattern Interestingness Measures

• Sequence Mining
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Frequent Itemset Generation 
Strategies

• Reduce the number of candidates (M)
– Complete search: M=2d

– Use pruning techniques to reduce M

• Reduce the number of transactions (N)
– Skip short transactions as size of itemset increases

• Reduce the number of comparisons (N*M)
– Use efficient data structures to store the candidates or 

transactions

– No need to match every candidate against every 
transaction

14

Reducing Number of Candidates

• Apriori principle:
– If an itemset is frequent, then all of its subsets must 

also be frequent

• Apriori principle holds due to the following 
property of the support measure:

– Support of an itemset never exceeds the support of its 
subsets

– This is known as the anti-monotone property of 
support
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)()()(:, YsXsYXYX 

Illustrating the Apriori Principle
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Found to be 

infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets

Illustrating the Apriori Principle
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Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 3 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13

Apriori Algorithm

• Generate L1 = frequent itemsets of length k=1

• Repeat until no new frequent itemsets are found

– Generate Ck+1, the length-(k+1) candidate itemsets, 
from Lk

– Prune candidate itemsets in Ck+1 containing subsets of 
length k that are not in Lk (and hence infrequent) 

– Count support of each remaining candidate by 
scanning DB; eliminate infrequent ones from Ck+1

– Lk+1=Ck+1; k = k+1
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Important Details of Apriori

• How to generate candidates?
– Step 1: self-joining Lk

– Step 2: pruning

• How to count support of candidates?

• Example of Candidate-generation for
L3={ {a,b,c}, {a,b,d}, {a,c,d}, {a,c,e}, {b,c,d} }
– Self-joining L3

• {a,b,c,d} from {a,b,c} and {a,b,d}
• {a,c,d,e} from {a,c,d} and {a,c,e}

– Pruning:
• {a,c,d,e} is removed because {a,d,e} is not in L3

– C4={ {a,b,c,d} }
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How to Generate Candidates?

• Step 1: self-joining Lk-1
insert into Ck

select p.item1, p.item2,…, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q
where p.item1=q.item1 AND … AND p.itemk-2=q.itemk-2

AND p.itemk-1 < q.itemk-1

• Step 2: pruning
– forall itemsets c in Ck do

• forall (k-1)-subsets s of c do
– if (s is not in Lk-1) then delete c from Ck
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How to Count Supports of Candidates?

• Why is counting supports of candidates a 
problem?
– Total number of candidates can be very large
– One transaction may contain many candidates

• Method:
– Candidate itemsets stored in a hash-tree
– Leaf node contains list of itemsets
– Interior node contains a hash table
– Subset function finds all candidates contained in a 

transaction
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Generate Hash Tree

• Suppose we have 15 candidate itemsets of length 3: 
– {1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 

4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

• We need:
– Hash function 
– Max leaf size: max number of itemsets stored in a leaf node (if number 

of candidate itemsets exceeds max leaf size, split the node)
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2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

Subset Operation Using Hash Tree
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1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

Subset Operation Using Hash Tree

24

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction
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Subset Operation Using Hash Tree
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1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 9 out of 15 candidates

Association Rule Generation

• Given a frequent itemset L, find all non-empty 
subsets f  L such that f  L – f satisfies the 
minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules are:
• ABC D, ABD C, ACD B, BCD A, 

A BCD, B ACD, C ABD, D ABC
AB CD, AC  BD, AD  BC, BC AD, 
BD AC, CD AB

• If |L| = k, then there are 2k – 2 candidate 
association rules (ignoring L  and  L)
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Rule Generation

• How do we efficiently generate association 
rules from frequent itemsets?
– In general, confidence does not have an anti-

monotone property
• c(ABCD) can be larger or smaller than c(ABD)

– But confidence of rules generated from the same 
itemset has an anti-monotone property

• For {A,B,C,D}, c(ABC  D)  c(AB  CD)  c(A  BCD)

• Confidence is anti-monotone w.r.t. number of items on 
the right-hand side of the rule
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Rule Generation for Apriori Algorithm
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Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules

Low 

Confidence 

Rule

Rule Generation for Apriori Algorithm

• Candidate rule is generated by merging two rules 
that share the same prefix
in the rule consequent

• Join(CDAB, BDAC)
would produce the candidate
rule D  ABC

• Prune rule DABC if its
subset ADBC does not have
high confidence

29

BD=>ACCD=>AB

D=>ABC

Improving Apriori

• Challenges
– Multiple scans of transaction database

– Huge number of candidates

– Tedious workload of support counting for 
candidates

• General ideas
– Reduce passes of transaction database scans

– Further shrink number of candidates

– Facilitate support counting of candidates

30
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Bottleneck of Frequent-Pattern Mining

• Apriori generates a very large number of 
candidates
– 104 frequent 1-itemsets can result in more than 107

candidate 2-itemsets
– Many candidates might have low support, or do not 

even exist in the database

• Apriori scans entire transaction database for 
every round of support counting

• Bottleneck: candidate-generation-and-test

• Can we avoid candidate generation?

31

How to Avoid Candidate Generation

• Grow long patterns from short ones using 
local frequent items

– Assume {a,b,c} is a frequent pattern in transaction 
database DB

– Get all transactions containing {a,b,c}

• Notation:  DB|{a,b,c}

– {d} is a local frequent item in DB|{a,b,c}, if and 
only if {a,b,c,d} is a frequent pattern in DB
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Construct FP-tree from a Transaction 
Database

33

{}
Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find 
frequent 1-itemsets 
(single item pattern)

2. Sort frequent items in 
frequency descending 
order, get f-list

3. Scan DB again, 
construct FP-tree

F-list=f-c-a-b-m-p

Construct FP-tree from a Transaction 
Database
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{}

f:1

c:1

a:1

m:1

p:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find 
frequent 1-itemsets 
(single item pattern)

2. Sort frequent items in 
frequency descending 
order, get f-list

3. Scan DB again, 
construct FP-tree

F-list=f-c-a-b-m-p

Construct FP-tree from a Transaction 
Database
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{}

f:2

c:2

a:2

b:1m:1

p:1 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find 
frequent 1-itemsets 
(single item pattern)

2. Sort frequent items in 
frequency descending 
order, get f-list

3. Scan DB again, 
construct FP-tree

F-list=f-c-a-b-m-p

Construct FP-tree from a Transaction 
Database
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{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find 
frequent 1-itemsets 
(single item pattern)

2. Sort frequent items in 
frequency descending 
order, get f-list

3. Scan DB again, 
construct FP-tree

F-list=f-c-a-b-m-p
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Benefits of the FP-tree Structure

• Completeness 
– Preserve complete information for frequent pattern 

mining
– Never break a long pattern of any transaction

• Compactness
– Reduce irrelevant info—infrequent items are gone
– Items in frequency descending order: the more 

frequently occurring, the more likely to be shared
– Never larger than the original database (if we do not 

count node-links and the count field)
– For some example DBs, compression ratio over 100
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Partition Patterns and Databases

• Frequent patterns can be partitioned into subsets 
according to f-list
– F-list=f-c-a-b-m-p

– Patterns containing p

– Patterns having m, but no p

– Patterns having b, but neither m nor p

– …

– Patterns having c, but neither a, b, m, nor p

– Pattern f

• This partitioning is complete and non-redundant
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Construct Conditional Pattern Base For 
Item X

• Conditional pattern base = set of prefix paths in FP-tree that co-
occur with x 

• Traverse FP-tree by following link of frequent item x in header table
• Accumulate paths with their frequency counts

39

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

From Conditional Pattern Bases to 
Conditional FP-Trees 

• For each pattern-base
– Accumulate the count for each item in the base

– Construct the FP-tree for the frequent items of the 
pattern base
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m-conditional pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent 
patterns having m, 
but not p

m, 

fm, cm, am, 

fcm, fam, cam, 

fcam



{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

Recursion: Mining Conditional FP-
Trees

41

{}

f:3

c:3

a:3
m-conditional FP-tree

Output: am
Cond. pattern base of “am”: fc:3

{}

f:3

c:3
am-conditional FP-tree

Output: cm
Cond. pattern base of “cm”: f:3

{}

f:3
cm-conditional FP-tree

For am-conditional FP-tree, output cam
Cond. pattern base of “cam”: f:3

{}

f:3
cam-conditional FP-tree

Output: fm
Cond. pattern base of “fm”: {}

FP-Tree Algorithm Summary

• Idea: frequent pattern growth
– Recursively grow frequent patterns by pattern and 

database partition

• Method 
– For each frequent item, construct its conditional 

pattern-base, and then its conditional FP-tree
– Repeat the process recursively on each newly created 

conditional FP-tree 
– Stop recursion when resulting FP-tree is empty

• Optimization if tree contains only one path: single path will 
generate all the combinations of its sub-paths, each of which 
is a frequent pattern

42
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FP-Growth vs. Apriori: Scalability With 
Support Threshold

43
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Why Is FP-Growth the Winner?

• Divide-and-conquer
– Decompose both the mining task and DB according to 

the frequent patterns obtained so far
– Leads to focused search of smaller databases

• Other factors
– No candidate generation, no candidate test
– Compressed database: FP-tree structure
– No repeated scan of entire database 
– Basic operations: counting local frequent single items 

and building sub FP-tree
• No pattern search and matching

44

Factors Affecting Mining Cost

• Choice of minimum support threshold
– Lower support threshold => more frequent itemsets

• More candidates, longer frequent itemsets

• Dimensionality (number of items) of the data set
– More space needed to store support count of each item
– If number of frequent items also increases, both computation and I/O 

costs may increase

• Size of database
– Each pass over DB is more expensive

• Average transaction width
– May increase max. length of frequent itemsets and traversals of hash 

tree (more subsets supported by transaction)

• How can we further reduce some of these costs?

45

Compact Representation of Frequent 
Itemsets

• Some itemsets are redundant because they 
have identical support as their supersets

• Number of frequent itemsets

• Need a compact representation

46

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
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Maximal Frequent Itemset

47

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E

Border

Infrequent 

Itemsets

Maximal 

Itemsets

An itemset is maximal-frequent if none of its supersets is frequent

Closed Itemset

• A frequent itemset is closed if none of its 
supersets has the same support
– Lossless compression of the set of all frequent 

itemsets

48

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

min_sup = 2
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Maximal vs Closed Frequent Itemsets

49

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids

Not supported by 

any transactions

Maximal vs Closed Frequent Itemsets

50

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

# Closed = 9

# Maximal = 4

Closed and 

maximal

Closed but 

not maximal

Maximal vs Closed Frequent Itemsets

• How to efficiently find 
maximal frequent 
itemsets? (similar for 
closed ones)
– Naïve: first find all 

frequent itemsets, then 
remove non-maximal 
ones

– Better: use maximality
property for pruning

• Effectiveness depends on 
itemset generation 
strategy

• See book for details

51

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

Methods for Frequent Itemset
Generation

• Traversal of itemset lattice
– General-to-specific: Apriori
– Specific-to-general: good for pruning for maximal frequent itemsets

54

Frequent

itemset

border null

{a
1
,a

2
,...,a

n
}

(a) General-to-specific

null

{a
1
,a

2
,...,a

n
}

Frequent

itemset

border

(b) Specific-to-general

..

..

..

..

Frequent

itemset

border

null

{a
1
,a

2
,...,a

n
}

(c) Bidirectional

..

..

Alternative Methods for Frequent 
Itemset Generation

• Traversal of itemset lattice
– Equivalence Classes: search one class first, before moving on to 

the next one

55

null

AB AC AD BC BD CD

A B C D

ABC ABD ACD BCD

ABCD

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

(a) Prefix tree (b) Suffix tree

Alternative Methods for Frequent 
Itemset Generation

• Traversal of Itemset Lattice
– Breadth-first vs Depth-first

• Apriori is breadth-first (good for pruning)
• Depth-first often good for maximal frequent itemsets: discover large frequent 

itemsets quickly, use for pruning

56

(a) Breadth first (b) Depth first
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Extension: Mining Multiple-Level 
Association Rules

• Items often form hierarchies
– Most relevant pattern might only show at the right 

granularity

• Flexible support settings
– Items at the lower level are expected to have lower 

support

57

uniform support

Milk

[support = 10%]

2% Milk 

[support = 6%]

Skim Milk 

[support = 4%]

Level 1

min_sup = 5%

Level 2

min_sup = 5%

Level 1

min_sup = 5%

Level 2

min_sup = 3%

reduced support

Extension: Mining Multi-Dimensional 
Associations

• Single-dimensional rules: one type of predicate
• buys(X, “milk”)  buys(X, “bread”)

• Multi-dimensional rules:  2 types of predicates
– Interdimensional association rules (no repeated 

predicates)
• age(X, “19-25”)  occupation(X, “student”)  buys(X, 

“coke”)

– Hybrid-dimensional association rules (repeated 
predicates)

• age(X, “19-25”)  buys(X, “popcorn”)  buys(X, “coke”)

• See book for efficient mining algorithms

58

Frequent Pattern Mining Overview

• Basic Concepts and Challenges

• Efficient and Scalable Methods for Frequent 
Itemsets and Association Rules

• Pattern Interestingness Measures

• Sequence Mining

59

Lift

• Rule found: Basketball Cereal [40%, 66.7%]
– Misleading, because overall % of students eating cereal is 75% (which 

is > 66.7%)

• BasketballNot_cereal [20%, 33.3%] is more useful, although with 
lower support and confidence

• Measure of dependent/correlated events: lift

60

89.0
5000/3750*5000/3000

5000/2000
),( CBlift 33.1

5000/1250*5000/3000

5000/1000
),( CBlift

Basketball Not basketball Sum (row)

Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

)()(

)(
),lift(

BPAP

BAP
BA




A, B are itemsets

Lift vs. Other Correlation Measures

• Intuition: Are milk and 
coffee usually bought 
together?

– (m, c) > (~m, c) + (m, ~c)

• m and c are…
– bought together in A’s
– independent in B
– not bought together in C’s

• All measures good for B
• Lift, 2 bad for A’s, C’s

– Reason: strongly affected by 
number of null-transactions 
(those without m, c)

• all_conf, cosine good for 
A’s, C’s

– Not affected by number of 
null-transactions

61

Milk No Milk

Coffee m, c ~m, c

No Coffee m, ~c ~m, ~c

)up(max_item_s

)sup(
)all_conf(

A

A
A 

)()(

)(
),cosine(

BPAP

BAP
BA




Lift vs. cosine: cosine 
does not depend on size 
of DB

Which Measure Is Best?

• Does it 
identify 
the right 
patterns?

• Does it 
result in 
an 
efficient 
mining 
algorithm?

62
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63

Symbol Measure Range P1 P2 P3 O1 O2 O3 O3' O4

 Correlation -1 … 0 … 1 Yes Yes Yes Yes No Yes Yes No

 Lambda 0 … 1 Yes No No Yes No No* Yes No

 Odds ratio 0 … 1 …  Yes* Yes Yes Yes Yes Yes* Yes No

Q Yule's Q -1 … 0 … 1 Yes Yes Yes Yes Yes Yes Yes No

Y Yule's Y -1 … 0 … 1 Yes Yes Yes Yes Yes Yes Yes No

 Cohen's -1 … 0 … 1 Yes Yes Yes Yes No No Yes No

M Mutual Information 0 … 1 Yes Yes Yes Yes No No* Yes No

J J-Measure 0 … 1 Yes No No No No No No No

G Gini Index 0 … 1 Yes No No No No No* Yes No

s Support 0 … 1 No Yes No Yes No No No No

c Confidence 0 … 1 No Yes No Yes No No No Yes

L Laplace 0 … 1 No Yes No Yes No No No No

V Conviction 0.5 … 1 …  No Yes No Yes** No No Yes No

I Interest 0 … 1 …  Yes* Yes Yes Yes No No No No

IS IS (cosine) 0 .. 1 No Yes Yes Yes No No No Yes

PS Piatetsky-Shapiro's -0.25 … 0 … 0.25 Yes Yes Yes Yes No Yes Yes No

F Certainty factor -1 … 0 … 1 Yes Yes Yes No No No Yes No

AV Added value 0.5 … 1 … 1 Yes Yes Yes No No No No No

S Collective strength 0 … 1 …  No Yes Yes Yes No Yes* Yes No

 Jaccard 0 .. 1 No Yes Yes Yes No No No Yes

K Klosgen's Yes Yes Yes No No No No No
33

2
0

3

1
321

3

2

























The P’s and O’s are various desirable properties, e.g., symmetry under variable permutation (O1),
which we do not cover in this class. Take-away message: no interestingness measure has all the
desirable properties.

Frequent Pattern Mining Overview

• Basic Concepts and Challenges

• Efficient and Scalable Methods for Frequent 
Itemsets and Association Rules

• Pattern Interestingness Measures

• Sequence Mining

75

Introduction

• Sequence mining is relevant for transaction 
databases, time-series databases, and sequence 
databases

• Applications of sequential pattern mining
– Customer shopping sequences: 

• First buy computer, then CD-ROM, and then digital camera, 
within 3 months

– Medical treatments, natural disasters (e.g., 
earthquakes), science & engineering processes, stocks 
and markets

– Telephone calling patterns, Weblog click streams
– DNA sequences and gene structures

76

What Is Sequential Pattern Mining?

• Given a set of sequences, find all frequent 
subsequences

77

A sequence database

A sequence: < (ef) (ab)  (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically

<a(bc)dc> is a subsequence
of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a 
sequential pattern

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Challenges of Sequential Pattern 
Mining

• Huge number of possible patterns

• A mining algorithm should 

– find all patterns satisfying the minimum support 
threshold

– be highly efficient and scalable

– be able to incorporate user-specific constraints 

78

Apriori Property of Sequential Patterns

• If a sequence S is not frequent, then none of 
the super-sequences of S is frequent

– E.g, if <hb> is infrequent, then so are <hab> and 
<(ah)b>

79

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

Given support threshold
min_sup =2,
find all frequent 
subsequences
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GSP: Generalized Sequential Pattern 
Mining

• Initially, every item in DB is a candidate of length k=1
• For each level (i.e., sequences of length k) do

– Scan database to collect support count for each candidate 
sequence

– Generate candidate length-(k+1) sequences from length-k 
frequent sequences

• Join phase: sequences s1 and s2 join, if s1 without its first item is 
identical to s2 without its last item

• Prune phase: delete candidates that contain a length-k 
subsequence that is not among the frequent ones

• Repeat until no frequent sequence or no candidate can 
be found

• Major strength: Candidate pruning by Apriori

80

Finding Length-1 Sequential Patterns

• Initial candidates: all singleton 
sequences
– <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

• Scan database once, count support 
for candidates

81

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2 

Cand Sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

GSP: Generating Length-2 Candidates

82

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

51 length-2

Candidates

Without Apriori property,

8*8+8*7/2=92 candidates

Apriori prunes 

44.57% candidates

The GSP Mining Process

• Scan 5: 1 candidate, 1 
length-5 seq. pattern

• Scan 4: 8 candidates, 6 
length-4 seq. patterns

• Scan 3: 47 candidates, 
19 length-3 seq. 
patterns, 20 candidates 
not in DB at all

• Scan 2: 51 candidates, 
19 length-2 seq. 
patterns, 10 candidates 
not in DB at all

• Scan 1: 8 candidates, 6 
length-1 seq. patterns

83

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>
Cand. does not pass 
support threshold

Cand. not in DB at all

min_sup =2 

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

Candidate Generate-and-Test 
Drawbacks

• Huge set of candidate sequences generated

• Multiple Scans of entire database needed

– Length of each candidate grows by one at each 
database scan

84

Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes 
of sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>, we have:

85

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

<bc> <d(cf)>

<(bc)> <(ac)d(cf)>
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Mining Sequential Patterns by Prefix 
Projections

• Step 1: find length-1 frequent sequential patterns

– <a>, <b>, <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of 
sequential patterns can be partitioned into six 
subsets:

– The ones having prefix <a>;

– The ones having prefix <b>;

– …

– The ones having prefix <f>

86

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Finding Seq. Patterns with Prefix <a>

• Only need to consider projections w.r.t. <a>
– <a>-projected database: <(abc)(ac)d(cf)>, 

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

• Find all length-2 frequent seq. patterns having 
prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
– Further partition into those 6 subsets

• Having prefix <aa>;

• Having prefix <ab>;

• Having prefix <(ab)>;

• …

• Having prefix <af>

87

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Completeness of PrefixSpan

88

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

DB

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

<b>-projected database …

Having prefix <b>

Having prefix <c>, …, <f>

… …

Efficiency of PrefixSpan

• No candidate sequence needs to be generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing 
projected databases

– Can be improved by pseudo-projections

89

Pseudo-Projection

• Major cost of PrefixSpan: projection
– Postfixes of sequences often appear repeatedly in 

recursive projected databases

• When (projected) database can be held in 
memory, use pointers
– Pointer to the sequence, offset of the postfix

• Why is this a bad idea
when the (projected)
database does not
fit in memory?

90

s=<a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: ( , 2)

s|<ab>: ( , 4)

Pseudo-Projection vs. Physical 
Projection

• Pseudo-projection avoids physically copying 
postfixes
– Efficient in running time and space when database can 

be held in main memory

• Not efficient when database cannot fit in main 
memory
– Disk-based random access

• Suggested Approach:
– Integration of physical and pseudo-projection
– Swapping to pseudo-projection when the data set fits 

in memory

91
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Performance on Data Set C10T8S8I8

92

Performance on Data Set Gazelle

93

Effect of Pseudo-Projection

94

Sequence Mining Variations

• Multidimensional and multilevel patterns

• Constraint-based mining of sequential patterns

• Periodicity analysis

• Mining biological sequences

– Hot research area, major topic by itself

• All these not discussed in class; see book

• Some of my own research: finding relevant 
sequences in bursty data; see paper

95

Frequent-Pattern Mining: Summary

• Important task in data mining

• Scalable frequent pattern mining methods

– Apriori (itemsets, candidate generation & test)

– GSP (sequences, candidate generation & test)

– Projection-based (FP-growth for itemsets, 
PrefixSpan for sequences)

• Mining a variety of rules and interesting 
patterns

132

Frequent-Pattern Mining: Research 
Problems

• Mining fault-tolerant frequent, sequential and 
structured patterns
– Patterns allows limited faults (insertion, deletion, 

mutation)

• Mining truly interesting patterns
– Surprising, novel, concise,…

• Application exploration
– E.g., DNA sequence analysis and bio-pattern 

classification
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