Data Mining Techniques: Classification and Prediction

Mirek Riedewald

Some slides based on presentations by Han/Kamber, Tan/Steinbach/Kumar, and Andrew Moore

 Example Predict if somebody will buy a computer 						
 Given data set: 	Age	Income	Student	Credit_rating	Buys_computer	
	\leq 30	High	No	Bad	No	
	\leq 30	High	No	Good	No	
	3140	High	No	Bad	Yes	
	> 40	Medium	No	Bad	Yes	
	> 40	Low	Yes	Bad	Yes	
	> 40	Low	Yes	Good	No	
	3140	Low	Yes	Good	Yes	
	\leq 30	Medium	No	Bad	No	
	\leq 30	Low	Yes	Bad	Yes	
	> 40	Medium	Yes	Bad	Yes	
	\leq 30	Medium	Yes	Good	Yes	
	3140	Medium	No	Good	Yes	
	3140	High	Yes	Bad	Yes	
	> 40	Medium	No	Good	No	
					25	

Testing The Tree with The Test Set

	1/4 of the tree nodes are corrupted	3/4 are fine
1/4 of the test set records are corrupted	1/16 of the test set will be correctly predicted for the wrong reasons	3/16 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	3/16 of the test predictions will be wrong because the tree node is corrupted	9/16 of the test predictions will be fine

d	Refund	Marital Status	Taxable Income	Class	Split on Refund: assume records wi missing values are distributed as
	Yes	Single	125K	No	discussed before
2	No	Married	100K	No	3/9 of record 10 go to Refund=Yes
3	No	Single	70K	No	6/9 of record 10 go to Refund=No
1	Yes	Married	120K	No	Entropy(Refund=Yes)
5	No	Divorced	95K	Yes	= -(1/3 / 10/3)log(1/3 / 10/3)
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	– (3 / 10/3)log(3 / 10/3) = 0.469
8	No	Single	85K	Yes	Entropy(Refund=No)
9	No	Married	75K	No	= -(8/3 / 20/3)log(8/3 / 20/3)
10	?	Single	90K	Yes	– (4 / 20/3)log(4 / 20/3) = 0.971

Optimal Model f(X) (cont.)

The choice of f(X) does not affect $E_{Y}\left[(Y - \overline{Y})^{2} \mid X\right]$ but $\left(\overline{Y} - f(X)\right)^{2}$ is minimized for $f(X) = \overline{Y} = E_{Y}[Y \mid X]$.

Note that
$$\operatorname{E}_{X,Y}\left[(Y - f(X))^2\right] = \operatorname{E}_{X}\left[\operatorname{E}_{Y}\left[(Y - f(X))^2 \mid X\right]\right]$$
 Hence

$$\mathbf{E}_{XY}\left[(Y-f(X))^2\right] = \mathbf{E}_{X}\left[\mathbf{E}_{Y}\left[(Y-\overline{Y})^2 \mid X\right] + \left(\overline{Y} - f(X)\right)^2\right]$$

Hence the squared error is minimzed by choosing $f(X) = E_{Y}[Y | X]$ for every X.

(Notice that for minimizing absolute error $E_{X,Y}[|Y - f(X)|]$, one can show that the best model is f(X) = median(X | Y).)

• Suppose there are m classes $C_1, C_2, ..., C_m$ • Classification goal: for record **x**, find class C_i that has the maximum posterior probability $P(C_i | \mathbf{X} = \mathbf{x})$ • Bayes' theorem: $P(C_i | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = x | C_i) P(C_i)}{P(\mathbf{X} = \mathbf{x})}$ • Since $P(\mathbf{X} = \mathbf{x})$ is the same for all classes, only need to find maximum of $P(\mathbf{X} = \mathbf{x} | C_i) P(C_i)$

Example: Computing $P(X=x|C_i)$ and $P(C_i)$

- P(buys_computer = yes) = 9/14
- P(buys_computer = no) = 5/14
- P(age>40, income=low, student=no, credit_rating=bad| buys_computer=yes) = 0 ?

Age	Income	Student	Credit_rating	Buys_computer
≤ 30	High	No	Bad	No
≤ 30	High	No	Good	No
3140	High	No	Bad	Yes
> 40	Medium	No	Bad	Yes
> 40	Low	Yes	Bad	Yes
> 40	Low	Yes	Good	No
3140	Low	Yes	Good	Yes
\leq 30	Medium	No	Bad	No
≤ 30	Low	Yes	Bad	Yes
> 40	Medium	Yes	Bad	Yes
\leq 30	Medium	Yes	Good	Yes
3140	Medium	No	Good	Yes
3140	High	Yes	Bad	Yes
> 40	Medium	No	Good	No

<equation-block><equation-block><equation-block><equation-block><equation-block><text><text>

The Joint Distribution

Recipe for making a joint distribution of d variables:

- Make a truth table listing all combinations of values of your variables (has 2^d rows for d Boolean variables).
- 2. For each combination of values, say how probable it is.

Example: Boolean variables A, B, C

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

And Other Computation Problems?
$$\mathbf{w} = \sum_{k=1}^{n} \alpha_k \cdot y(k) \cdot \Phi(\mathbf{x}(k)) \quad b = \sum_{k:0 < \alpha_k < C} \left\{ \frac{1}{y(k)} - \Phi(\mathbf{x}(k)) \cdot \mathbf{w} \right\}$$
• What about computing \mathbf{w} ?• Finally need $f(\mathbf{x}, \mathbf{w}, b) = \operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)$: $\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{k=1}^{n} \alpha_k \cdot y(k) \cdot \Phi(\mathbf{x}(k)) \cdot \Phi(\mathbf{x})$ • Can be computed using the same trick as before• Can apply the same trick again to b, because $\Phi(\mathbf{x}(k)) \cdot \mathbf{w} = \sum_{j=1}^{n} \alpha_j \cdot y(j) \cdot \Phi(\mathbf{x}(k)) \cdot \Phi(\mathbf{x}(j))$

	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	Class=Yes	Class=No
	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

