Data Preprocessing

Mirek Riedewald

Some slides based on presentation by Jiawei Han and Micheline Kamber

Motivation

- Garbage-in, garbage-out

 Cannot get good mining results from bad data
- Need to understand data properties to select the right technique and parameter values
- Data cleaning
- · Data formatting to match technique
- Data manipulation to enable discovery of desired patterns

Data Records

- Data sets are made up of data records
- A data record represents an entity
- Examples:
 - Sales database: customers, store items, sales
 - Medical database: patients, treatments
 - University database: students, professors, courses
- Also called samples, examples, tuples, instances, data points, objects
- Data records are described by attributes
 - Database row = data record; column = attribute

Attributes

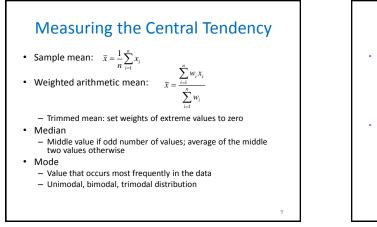
- Attribute (or dimension, feature, variable): a data field, representing a characteristic or feature of a data record – E.g., customerID, name, address
- Types:
 - Nominal (also called categorical)
 - No ordering or meaningful distance measure
 Ordinal
 - Ordered domain, but no meaningful distance measure
 Numeric
 - Ordered domain, meaningful distance measure
 - Continuous versus discrete

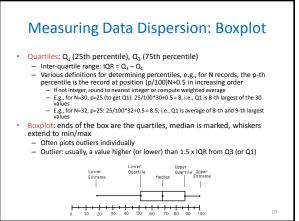
Attribute Type Examples

- Nominal: category, status, or "name of thing"

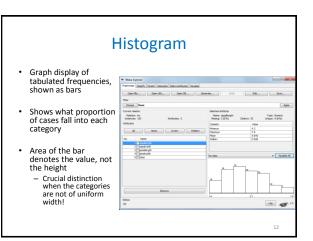
 Hair_color = {black, brown, blond, red, auburn, grey, white}
 marital status, occupation, ID numbers, zip codes
- Binary: nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 e.g., gender
 - Asymmetric binary: outcomes not equally important.
 e.g., medical test (positive vs. negative)
- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known
 - Size = {small, medium, large}, grades, army rankings

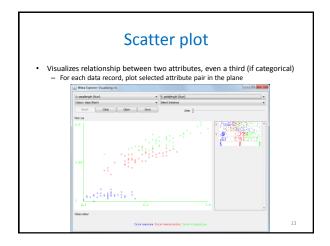
Numeric Attribute Types

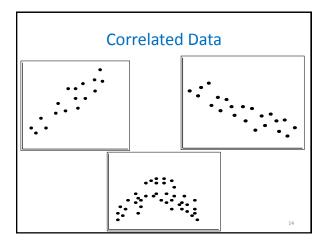

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 E.g., temperature in C or F, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10m is twice as high as 5m).
 - E.g., temperature in Kelvin, length, counts, monetary quantities

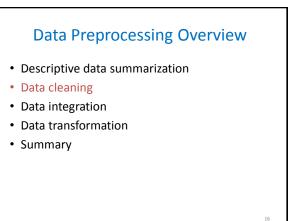

Discrete vs. Continuous Attributes

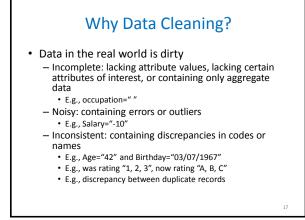
- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Nominal, binary, ordinal attributes are usually discrete
 - Integer numeric attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - E.g., temperature, height, or weight - Practically, real values can only be measured and
 - represented using a finite number of digits
 - Typically represented as floating-point variables

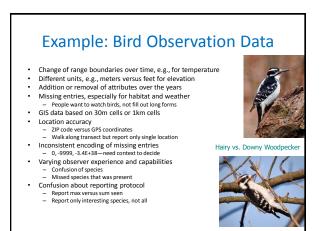

Data Preprocessing Overview


- Descriptive data summarization
- Data cleaning
- Data integration
- Data transformation
- Summary




Measuring Data Dispersion: Variance • Sample variance (aka second central moment): $m_2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$ • Standard deviation = square root of variance • Estimator of true population variance from a sample: $s_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$





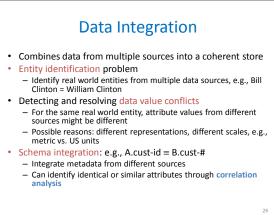
How to Handle Missing Data?

- Ignore the record
- Usually done when class label is missing (for classification tasks) Fill in manually
- Tedious and often not clear what value to fill in
- Fill in automatically with one of the following:
 - Global constant, e.g., "unknown"
 "Unknown" could be mistaken as new concept by data mining algorithm
 - Attribute mean
 - Attribute mean for all records belonging to the same class
 - Most probable value: inference-based such as Bayesian formula or decision tree

19

25

· Some methods, e.g., trees, can do this implicitly


How to Handle Noisy Data?

- Noise = random error or variance in a measured variable
 - Typical approach: smoothing


 Adjust values of a record by taking values of other "nearby" records into account
 - Dozens of approaches
 - Binning, average over neighborhood
 - Regression: replace original records with records drawn from regression function
 - Identify and remove outliers, possibly involving human inspection
- For this class: don't do it unless you understand the nature of the noise
 - A good data mining technique should be able to deal with noise in the data

Data Preprocessing Overview

- Descriptive data summarization
- Data cleaning
- Data integration
- Data transformation
- Summary

Covariance (Numerical Data) • Covariance computed for data samples $(A_1, A_2, ..., A_n)$ and $(B_1, B_2, ..., B_n)$: $Cov(A, B) = \frac{1}{n} \sum_{i=1}^{n} (A_i - \overline{A})(B_i - \overline{B}) = \frac{1}{n} \sum_{i=1}^{n} A_i B_i - \overline{A} \cdot \overline{B}$ • If A and B are independent, then Cov(A, B) = 0, but the converse is not true – Two random variables may have covariance of 0, but are not independent • If Cov(A, B) > 0, then A and B tend to rise and fall together – The greater, the more so • If covariance is negative, then A tends to rise as B falls and vice versa

26

Correlation Analysis (Numerical Data)

- Pearson's product-moment correlation coefficient of random variables A and B: $\rho_{A,B} = \frac{Cov(A,B)}{\sigma \ \sigma}$ $\sigma_{A}\sigma_{B}$
- Computed for two attributes A and B from data samples $(A_1, A_2, ..., A_n)$ and $(B_1, B_2, ..., B_n)$:

$$r_{A,B} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{A_i - \overline{A}}{s_A} \cdot \frac{B_i - \overline{B}}{s_B} \right)$$

Where \overline{A} and \overline{B} are the sample means, and s_A and s_B are the sample standard deviations of A and B (using the variance formula for s_n).

- Note: $-1 \le r_{A,B} \le 1$
 - r_{A,B} > 0: A and B positively correlated
 The higher, the stronger the correlation

 - r_{A,B} < 0: negatively correlated

Correlation Analysis (Categorical Data)

χ² (chi-square) test

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}}$$

- The larger the χ^2 value, the more likely the variables are related
- The cells that contribute the most to the χ^2 value are those whose actual count is very different from the expected count

28

- Correlation does not imply causality
 - # of hospitals and # of car-thefts in a city are correlated
 - Both are causally linked to the third variable: population

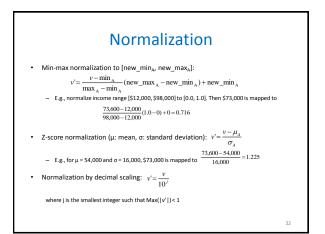
Chi-Square Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

Numbers in parenthesis are expected counts calculated based on the data distribution in the two categories

 $\chi^{2} = \frac{(250 - 90)^{2}}{20} + \frac{(50 - 210)^{2}}{210} + \frac{(200 - 360)^{2}}{200} + \frac{(1000 - 840)^{2}}{200} = 507.93$ 210 360 840

It shows that like_science_fiction and play_chess are correlated in the group

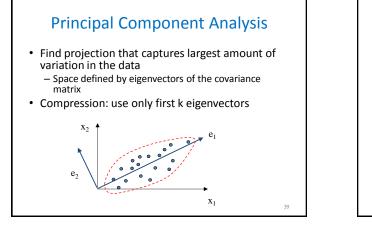


- Data cleaning
- Data integration
- Data transformation
- Summary

Why Data Transformation?

- · Make data more "mineable"
 - E.g., some patterns visible when using single time attribute (entire date-time combination), others only when making hour, day, month, year separate attributes
 - Some patterns only visible at right granularity of representation
- · Some methods require normalized data
 - E.g., all attributes in range [0.0, 1.0]
- · Reduce data size, both #attributes and #records

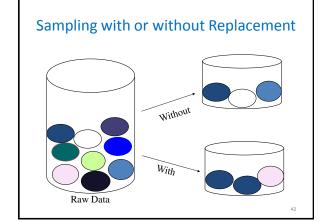
31

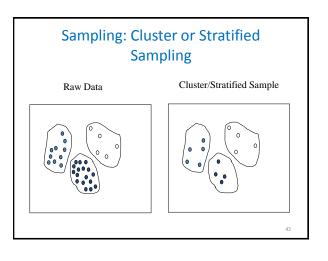

Data Reduction

- Why data reduction?
 - Mining cost often increases rapidly with data size and number of attributes
- Goal: reduce data size, but produce (almost) the same results
- Data reduction strategies
 - Dimensionality reduction
 - Data Compression
 - Numerosity reduction
 - Discretization

Dimensionality Reduction: Attribute Subset Selection

- Feature selection (i.e., attribute subset selection):
 - Select a minimum set of attributes such that the mining result is still as good as (or even better than) when using all attributes
- Heuristic methods (due to exponential number of choices):
 - Select independently based on some test
 - Step-wise forward selection
 - Step-wise backward elimination
 - Combining forward selection and backward elimination
 - Eliminate attributes that some trusted method did not use, e.g., a decision tree


30



Data Reduction Method: Sampling

- · Select a small subset of a given data set
- Reduces mining cost
 - Mining cost usually is super-linear in data size
 Often makes difference between in-memory processing and
 - Other makes difference between in-memory processing and need for expensive I/O
- Choose a representative subset of the data

 Simple random sampling may have poor performance in the presence of skew
- Develop adaptive sampling methods
 - Stratified sampling
 - Approximate the percentage of each class (or sub-population of interest) in the overall database
 - Used in conjunction with skewed data

Data Reduction: Discretization

- Applied to continuous attributes
- Reduces domain size
- Makes the attribute discrete and hence enables use of techniques that only accept categorical attributes
- Approach:
 - Divide the range of the attribute into intervals
 - Interval labels replace the original data

Data Preprocessing Overview

- Descriptive data summarization
- Data cleaning
- Data integration
- Data transformation
- Summary

Summary

- Data preparation is a big issue for data mining
- Descriptive data summarization is used to understand data properties
- Data preparation includes
 - Data cleaning and integration
 - Data reduction and feature selection
 - Discretization
- Many techniques and commercial tools, but still major challenge and active research area

46

44