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Abstract

We address the problem of online (streaming) action seg-
mentation for egocentric procedural task videos. While pre-
vious studies have mostly focused on offline action segmen-
tation, where entire videos are available for both training
and inference, the transition to online action segmentation
is crucial for practical applications like AR/VR task assis-
tants. Notably, applying an offline-trained model directly to
online inference results in a significant performance drop
due to the inconsistency between training and inference. We
propose an online action segmentation framework by first
modifying existing architectures to make them causal. Sec-
ond, we develop a novel action progress prediction module
to dynamically estimate the progress of ongoing actions and
using them to refine the predictions of causal action segmen-
tation. Third, we propose to learn task graphs from training
videos and leverage them to obtain smooth and procedure-
consistent segmentations. With the combination of progress
and task graph with casual action segmentation, our frame-
work effectively addresses prediction uncertainty and over-
segmentation in online action segmentation and achieves
significant improvement on three egocentric datasets.1

1. Introduction

The future of computer vision holds exciting possibilities
for seamlessly integrating augmented and virtual reality
(AR/VR) into our daily lives. Imagine wearing AR glasses
while you assemble or repair a complex machine, perform
a medical procedure on a patient or cook a gourmet meal.
Your virtual task assistant would recognize your actions in
real-time, anticipate your next steps and guide you through
the entire procedure. In this context, advanced computer
vision technologies, including online and real-time user
action understanding, become increasingly important.

1Code is available at https://github.com/Yuhan-Shen/
ProTAS.
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Figure 1. (a) Online action segmentation: use past and current frames
to make predictions. (b) Action progress prediction: estimate the progress
of each ongoing action in real time. (c) Task graph captures all feasible
transcripts to perform a procedural task. We learn the task graph from
training videos. (d) We use the predicted action progress and the learned
task graph to improve online action predictions. Our framework allows us
to demonstrate how to complete the current step based on the estimated
progress and anticipate or guide the user to the next possible step(s).

While there have been extensive studies on video action
segmentation, whose goal is to divide long videos (includ-
ing procedural ones) into multiple segments of actions, the
literature in this area has predominantly focused on offline
action segmentation, where entire videos are given and used
during both training and inference [2, 7, 21, 39, 43, 49, 50,
54, 62, 67–69, 71, 80–82, 84]. Such methods leverage past
and future frames to predict the action of a given frame.
However, achieving the vision of AR/VR task assistants re-
quires a shift from traditional offline action segmentation to
the dynamic realm of online (streaming) action segmenta-
tion, where actions must be recognized as frames arrive.

Notice that one can train an action segmentation model
in an offline fashion and apply it online to all frames up to
the current time or using a sliding window [27]. However,
this approach suffers from major issues: i) it incurs a very



large computational cost, since we need to run the entire
model every time new frames arrive; ii) the discrepancy be-
tween the offline training and online inference leads to low
performance (as we show in our experiments), iii) the model
often exhibits oversegmentation and abrupt transitions be-
tween actions, partly due to the lack of future frames. A
few recent works have tried to address weakly-supervised
online action segmentation [26, 27], but their performance
is limited due to using weak supervision and their setting is
different from what we study in this paper, which is fully-
supervised online action segmentation.

Paper Contributions. We address the problem of online
action segmentation, specially in the domain of egocentric
procedural task videos captured through wearable AR/VR
devices, see Figure 1. These videos offer a first-person view
of human interaction with the environment as people han-
dle objects and perform tasks. To address the challenges
in online action segmentation, we propose a PRogress-
aware Online Temporal Action Segmentation (ProTAS)
framework by introducing a novel component called Ac-
tion Progress Prediction (APP). As shown in Figure 1(b),
APP estimates the progress of each action as it proceeds,
providing a dynamic and accurate assessment of the current
state of ongoing actions. By equipping the model with the
ability to estimate the progress of actions in real-time, it can
make more informed and contextually relevant predictions
during online action segmentation. This not only mitigates
the problem of oversegmentation, but also ensures smoother
transitions between actions, empowering the model to seg-
ment actions more accurately.

Moreover, we recognize that the inherent structure of
procedural tasks can provide valuable cues for action seg-
mentation. Therefore, we take a holistic approach by learn-
ing the task graph from training videos and incorporating it
during both training and testing. Task graphs encode the
temporal relationships and dependencies between actions
(steps) within a task, offering a rich source of contextual
information that enhances the precision and efficiency of
online action segmentation by considering the completion
status of the predecessors and successors of an action node
in the graph. With the combination of the action progress
prediction module and the task graph-based predictions, our
model is able to segment streaming videos in an online fash-
ion, achieving remarkable improvements on three egocen-
tric procedural video datasets.

To address the lack of a sufficiently large egocentric pro-
cedural dataset from the cooking domain, we gathered 207
videos from 5 recipes, for a total of 16.6 hours of footage.
We manually built the task graphs, captured videos corre-
sponding to different variations of each task according to the
task graph and carefully annotated the videos with frame-
wise step labels. We plan to publicly release our dataset.

2. Related Works
Action Segmentation. Depending on the level of super-
vision, action segmentation can be classified into three
main categories: unsupervised [3, 18, 19, 24, 40, 41,
63, 66, 73, 78, 87], weakly-supervised [11, 14, 23, 46–
48, 51, 55, 55, 56, 59–61, 65, 71], and fully-supervised [2, 7,
21, 34, 35, 39, 43, 49, 50, 52, 57, 62, 67–69, 71, 81, 82, 84]
approaches. Recent work in [44] has also studied joint tem-
poral action segmentation and error detection. Our work
primarily aligns with the fully-supervised methods. How-
ever, it is worth noting that previous studies have predom-
inantly focused on offline action segmentation, where both
past and future frames are utilized to make predictions at
the current frame. This approach, while effective, faces lim-
itations when applied to streaming videos, where access to
future frames for prediction is impossible. Consequently,
there exists a critical need to develop a robust online action
segmentation model for real-world applications and scenar-
ios where access to future frames is constrained. While a
recent work OODL [26] has attempted to bridge the dis-
crepancy between online and offline action segmentation,
it only uses transcripts as weak supervision, which limits
the performance. In contrast, our work is focused on on-
line action segmentation using full supervision, aiming at
developing reliable models for AR task assistants.

Online Video Understanding. While online action seg-
mentation remains an understudied area, the online setting
has been explored in other video understanding tasks. On-
line action recognition [8, 33, 42, 72] aims to recognize the
action class of a video clip given a small fraction of frames.
Online action detection [13, 20, 25, 76, 77, 79, 85] classifies
per-frame action classes under the streaming video setting,
where a video contains only one or very few actions. Online
action localization [37, 38, 70] focuses on instance-level
detection of actions in streaming videos. However, com-
pared with these tasks, online action segmentation presents
a notably greater challenge as segmenting actions requires
a holistic long-range understanding of the videos. The tem-
poral dependencies between actions are critical for accurate
segmentation, and in the online setting, they become partic-
ularly challenging, due to the lack of future frames. Action
anticipation [28, 29, 83] aims to predict the next step given
the current video frames. While we both operate without
access to future frames, our work produces precise frame-
wise predictions of ongoing actions while action anticipa-
tion only predicts the class of the incoming action.

Action Progress Prediction. Our work draws inspiration
from previous efforts on phase progression [15, 17, 30, 31,
53], which aim to estimate the progress of ongoing actions.
Those works mainly concentrate on short video clips of in-
dividual actions, often ignoring relationships across multi-
ple actions in the same video. In our work, we introduce
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Figure 2. Illustration of our proposed progress-aware online temporal action segmentation (ProTAS) framework.

a progress monitoring module to keep track of various ac-
tions in the same video, and combine this information with
procedural graphs to enhance online action segmentation.

Task Graph. Recent research on procedural videos has wit-
nessed a growing interest in the integration of task graphs
or knowledge graphs to leverage procedural knowledge to
enhance performance [4, 16, 86]. This approach involves
leveraging structured representations, often in the form of
graphs, to encode information about the relationships and
dependencies between different elements within a video.
Task graphs are even more important in the online settings
as the future information is unavailable. While Graph2Vid
[16] has explored the use of flow graphs as a form of weak
supervision for action segmentation, it is designed for of-
fline action segmentation, as it requires dynamic program-
ming between the entire video and the flow graph. In our
paper, we propose to use the estimated progress to pinpoint
the current state on the task graphs for online action seg-
mentation, which has not been explored in the literature. [4]
initially predicts keysteps in frames with high confidence
and subsequently determines the maximum probability path
for frames with low confidence using the task graph. How-
ever, it requires foreknowledge of the action labels of future
frames, making it unsuitable for the online setting.

3. Problem Setting

We study the problem of fully-supervised online action seg-
mentation. Assume we have a set of K actions and a test
input video clip that consists of features of frames up to the
current time t, denoted by Xt = (x1,x2, . . . ,xt). Here,
t ∈ {1, . . . , T}, where T is the length of the entire test video
and xt ∈ RD denotes the pre-extracted feature of frame t.
The goal of an online action segmentation model, gonline(·),
is to predict the K-dimensional vector yt ∈ [0, 1]K of the
likelihood of actions at the current frame t, i.e.,

yt = gonline(x1,x2, . . . ,xt). (1)

For training, we have multiple full videos and their ground-
truth action segmentation labels.

In contrast, offline action segmentation, goffline(·), pre-
dicts the action of the frame t by using the entire video,

yt = goffline(x1,x2, . . . ,xt, . . . ,xT ). (2)

Prior works on offline action segmentation have mainly em-
ployed Temporal Convolutional Network (TCN) [21, 43,
45, 50] or Transformers [7, 49, 82], which are non-causal,
i.e., use also information from future frames to predict the
current action. As we show in our experiments, models
trained with future information (i.e., trained offline) have
a significant performance degradation when tested online.

4. Proposed Online Temporal Action Segmen-
tation Framework

Overview. We propose an online action segmentation
framework with a focus on egocentric procedural videos,
see Fig. 2. Our framework has the following components.
— First, we use a causal action segmentation (CAS)

module by modifying existing architectures, where we use
causal (dilated) convolutions for TCN-based models and
causal masking for Transformer-based models, see Fig. 3.
Therefore, prediction for each frame will be based on only
the past and current information during training. This
makes the training and testing similar and improves the on-
line segmentation accuracy, as we show in the experiments.
— A main challenge in online action segmentation is

oversegmentation (fluctuating action predictions), espe-
cially at the beginning, where not many frames are avail-
able. On the other hand, in egocentric videos, the scene
contains cues about progress of an action. For example,
the appearance of relevant objects may smoothly change as
we progress, e.g., as we spread peanut butter on bread or
fold paper filter, see Fig. 4. Therefore, we develop an ac-
tion progress prediction (APP) module that estimates the
progress made within an action and use it with the output
of the CAS module to obtain more accurate and smoother
action predictions. The progress can also be used as feed-
back in the AR/VR to notify the user of their progress and
the amount of work remained in a step, see Fig. 1(d).
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Figure 3. Left: In causal dilated convolution, the filter operates on past
and present data without access to future data. Right: In causal masking,
the attention mechanism only attends to previous elements in a sequence.

— Task graph encodes important information about plau-
sible sequences of actions, see Fig. 1(c). In particular, the
successors of an action cannot start unless the action is com-
pleted (full progress), while to start an action all its prede-
cessors must be completed. Obtaining and leveraging such
relationships allow us to find plausible and smooth predic-
tions. Therefore, we propose a method to estimate the task
graph from training videos (without using external knowl-
edge sources as in [4, 86]) and to leverage it with action
progress during both training and inference.
Next, we describe each component in more details.

4.1. Causal Action Segmentation (CAS)

To ensure consistency between the inference and training
setting and subsequently improve the action segmentation
performance, we first modify existing architectures to be
causal, i.e., depend only on current and past frames, see
Fig. 3. For TCN-based methods, we replace dilated con-
volutions with causal dilated convolutions [74]. Causal di-
lated convolutions are designed to only incorporate past and
current frame information. For Transformer-based meth-
ods, we use causal masking [75], where the model can only
attend to past frames within the self-attention mechanism,
preventing it from accessing future information.

Similar to prior works on offline action segmentation
[21, 80, 82], we use the frame-wise cross-entropy loss and
smoothing loss for training,

L = Lcls + λsmoLsmo

=
1

T

∑
t

− log (yt,qt) +
λsmo

TK

∑
t

∑
k

(yt−1,k − yt,k)
2 ,

(3)

where qt is the ground-truth label of the t-th frame, yt,qt
is the predicted probability of the ground-truth label qt at
frame t and λsmo is the weight for the smoothing loss.

4.2. Action Progress Prediction (APP)

In the online setting, the small number of frames especially
at the beginning leads to fluctuating and unreliable predic-
tions. The progress of an action, on the other hand, can
inform the action prediction. For example, if the user has
made about 30% progress in an action at the previous time
instants, they will continue performing the same action at

Fold paper filter to create a quarter circle

Spread peanut butter on tortilla

Remove car wheel

…

…

…

Figure 4. The scene contains progress cues. For example, the appearance
of step-relevant objects may smoothly change as we progress in the step.

the current time with high probability. On the other hand, if
an action has been completed (about 100% progress), a new
action is likely to occur at the current time.

We propose an action progress prediction (APP) module
to estimate the progress of each action as it unfolds. APP
is a regression branch and works in parallel to the causal
action segmentation branch. Specifically, we use a Gated
Recurrent Unit (GRU) layer [12] to estimate the progress
given its dynamically evolving characteristics. We predict
the progress of each action separately. We concatenate the
raw action probabilities from CAS and the progress estima-
tions from APP, and feed them through a progress-driven
prediction module, which consists of a Multi-Layer Percep-
tron (MLP), to output the final action segmentation prob-
abilities, see Fig. 2. These final probabilities are indeed a
refinement of the raw action probabilities conditioned on
action progress estimation. Thus, our model is able to mit-
igate oversegmentation and abrupt transitions between ac-
tions, as we show in the experiments.

To learn the progress from training videos, given a seg-
ment [ts, te] belonging to action k, we define the target ac-
tion progress at frame t as the fraction of the action duration
that has already passed, i.e.,

p∗t,k =
t− ts
te − ts

∈ [0, 1], (4)

where the target progress value at the starting frame is
p∗ts,k = 0 and at the ending frame (completion moment)
is p∗te,k = 1. This target linear progress is similar to ex-
isting literature in phase progression and action completion
[6, 15, 17, 30–32, 53]. We use Mean Squared Error (MSE)
loss to supervise the progress learning, i.e.,

Lprog =
1

TK

∑
t

∑
k

(
pt,k − p∗t,k

)2
, (5)

where pt,k is the prediction from the APP module.



4.3. Leveraging Task Graph

Task graph captures partial orderings of actions and pro-
vides all feasible ways to execute a task, see Fig. 1(c). More
specifically, an action node can only start when all its pre-
decessors are completed. Thus, the task graph encodes i)
prerequisites that must precede the execution of a specific
action (e.g., we must take out the tortilla from its bag and
put it on board before applying jam on it), ii) irreversible
constraints that some actions cannot be performed after the
completion of a particular action (e.g., we cannot apply
peanut butter again after we have rolled the tortilla). We
propose to learn (see next subsection) and leverage the task
graph for plausible and smooth online action segmentation
during both training and inference.

Let Ap(k) and As(k) denote, respectively, the set of pre-
decessors and successors of the action node k in the task
graph. We use the Breadth-First Search (BFS) algorithm
[1, 16] to traverse the parent-child relationships of each ac-
tion node k to obtain its predecessors and successors. We
design a loss that enforces predicting an action k at time t
must incur a penalty when i) its predecessors have not been
completed, ii) some of its successors are (being) completed.
Thus, we first need to have an estimate of the completion
state of an action. We use progress predictions to compute
the completion state of action k at time t as

ct,k = max
t′=1,2,...,t−1

pt′,k ∈ [0, 1]. (6)

Thus, when ct,k is close to 1, the action k was close to com-
pletion in the previous frames.

For each action k at time t, we define two scores. One
score indicates how far the predecessors of k are from com-
pletion at time t,

αp
t,k =

∑
k′∈Ap(k)

(1− ct,k′). (7)

The score will be zero when all predecessors of k are com-
pleted before frame t, otherwise it will be positive. The
second score indicates whether any successor of k has been
in progress before time t,

αs
t,k =

∑
k′∈As(k)

ct,k′ . (8)

This score will be zero when no successor of k has started
before time t, otherwise it will be positive.

To have predictions that satisfy the predecessors and suc-
cessors requirements, we introduce a task-graph loss,

Lgraph =
1

TK

∑
t

∑
k

(αp
t,k + αs

t,k) · yt,k, (9)

which enforces that when at time t action k is predicted
(yt,k = 1), then the predecessors of k must have been com-
pleted (i.e., αp

t,k is close to zero) and the successors of k
cannot be in progress (i.e., αs

t,k is close to zero).

4.4. Learning Task Graphs

Manually-built task graphs are not always available. We
study two methods to obtain the task graph from train-
ing videos. Thus, unlike recent works [4, 86] that use the
large-scale external knowledge base WikiHow to build the
task graph, our method obtains it merely from the training
videos, hence, can handle any procedural tasks.

Let Mp ∈ {0, 1}K×K denote a predecessor indicator
matrix, whose (i, j)-th entry is 1 when node i is a predeces-
sor of j. We similarly define a successor indicator matrix,
M s. We can rewrite (7) and (8) in matrix form as

Ap = (1−C) ·Mp, As = C ·M s, (10)

where C = [ct,k] is the completion state matrix and Ap =
[αp

t,k] and As = [αs
t,k], all being T ×K matrices.

Transcript-based Task Graph. We generate a soft version
of the predecessor/successor indicator matrices by comput-
ing the frequency of action i occurring before/after action
j across the transcripts of training videos. This approach
is particularly useful when dealing with large datasets and
allows for automated extraction of task dependencies based
on observed action sequences. We differ from prior works
in text knowlegde-based task graph [4, 86] in that we gen-
erate task-specific graphs for action segmentation.

Learnable Task Graph. We can also set the predeces-
sor/successor indicator matrix as learnable parameters and
automatically update them during training. This approach
allows the task graph to adapt and evolve based on the data
it processes. We initialize the indicator matrix with the
transcript-based task graph, and set a regularization term,
i.e., MSE loss, to the initialized matrix and the learnt matrix
to avoid trivial solution where all nodes are disconnected.
Thus, the learnable graph can be considered as a refinement
of the transcript-based graph.

4.5. Learning and Inference

Learning. Our final objective function for training is a com-
bination of classification loss, smoothing loss, progress pre-
diction loss, and task-graph loss,

L = Lcls + λsmoLsmo + λprogLprog + λgraphLgraph, (11)

where λsmo, λprog, λgraph are the weights for the correspond-
ing loss terms. We use Stochastic Gradient Descent (SGD)
optimization algorithm to update the parameters in both the
action classification and progress regression branches.

Inference. For testing, we input the frames up to time t into
our progress-aware causal action segmentation model to get
the action logits ot,k of each action class k. Instead of di-
rectly applying the Softmax function on action logits to get
the probabilities, we leverage the task graph for inference



Method Inference
GTEA EgoProceL EgoPER

Acc Edit F1@{0.1,0.25,0.5} Acc Edit F1@{0.1,0.25,0.5} Acc Edit F1@{0.1,0.25,0.5}
Base Offline 76.3 79.0 85.8 83.4 69.8 69.2 56.9 58.9 55.8 45.9 83.0 85.9 88.9 87.4 77.3
Base Online 47.0 58.8 64.6 56.3 38.7 18.3 19.9 20.6 15.9 8.8 20.2 31.0 33.3 24.5 11.9
CAS Online 74.0 64.4 71.8 69.4 56.0 64.5 42.5 45.2 41.6 33.0 71.8 48.9 56.2 52.2 39.4

CAS+OODL [26] Online 74.0 64.7 70.3 66.9 54.1 66.4 44.0 44.7 41.5 30.5 71.2 49.3 55.6 52.3 40.0
CAS+APP Online 76.0 67.0 75.1 71.1 57.9 66.3 47.1 49.3 44.9 35.2 72.7 55.0 62.0 58.3 43.4

CAS+APP+TG Online 74.3 69.2 77.1 74.1 59.7 67.8 48.8 51.5 46.0 35.7 70.2 60.7 65.4 61.2 46.3

Table 1. Performance on three datasets, using MSTCN as the base model.

by subtracting the penalty scores in (7) and (8) from the
original logits before feeding them into the Softmax layer:

yt,k =
eot,k−η(αp

t,k+αs
t,k)∑

k′ e
ot,k′−η(αp

t,k′+αs
t,k′ )

, (12)

where the hyperparameter η controls the weight of the task
graph at testing. Thus, we use the procedural knowledge to
encourage (discourage) online predictions that follow (dis-
obey) the task graph (with high scores for αp

t,k and αs
t,k).

5. Experiments
5.1. Experimental Setup

Datasets. We use two established egocentric procedural
video datasets: GTEA [22] and EgoProceL [5], as well
as the recent EgoPER dataset [44], which focuses on ac-
tion segmentation and error detection in procedural cooking
tasks. EgoPER [44] consists of 213 normal and 173 erro-
neous egocentric videos, and our study exclusively involves
the normal videos. These videos feature different users per-
forming five cooking-related procedural tasks: ‘making cof-
fee’, ‘making pinwheel’, ‘making tea’, ‘making oatmeal’,
and ‘making quesadilla’. The videos were captured while
the users were equipped with Hololens 2. Each task is asso-
ciated with a pre-defined task graph that comprehensively
encodes all feasible ways to perform the task, and the users
were instructed to collect videos according to these varia-
tions (see supplementary materials for the task graphs). We
also conduct experiments on Assembly101 [64] in the sup-
plementary materials. We observed a lower performance
gain on it as the egocentric videos are gray-scale and the
steps of assembling small toy parts occur at a very small
portion of the view, making it hard to capture progress.

For GTEA, we report the average performance on four
splits. EgoProceL consists of egocentric videos from five
subsets of different dataset sources, so we train a model on
each subset, and report the average performance across all
subsets. For EgoPER, we train a model on each task, and
report the average performance across all tasks.
Action Segmentation Model. We use MSTCN [21] and
ASFormer [82] as our action segmentation backbone. As
mentioned in Sec. 4.1, we use causal dilated convolution
in MSTCN and causal masking in ASFormer. We use these
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Figure 5. Action-wise improvement gain from APP on EgoProceL.

two popular action segmentation models as our backbone
and evaluate the performance gain by our proposed action
progress prediction (APP) module and task graph (TG). We
did not use MSTCN++ [50] because its dual dilated layer
is not beneficial in the context of online action segmenta-
tion where future information is not available, although it
improves the offline performance over MSTCN. Please see
the supplementary for more details.

Implementation Details. We extract 2048-dim features
on a window of 32 history frames using I3D [10] pre-
trained on Kinetics [10]. Following prior works [21, 80, 82],
we evaluate the performance using standard metrics in ac-
tion segmentation: edit similarity, F1 score with thresholds
0.1, 0.25, and 0.5 (F1@10,25,50), and frame-wise accu-
racy (Acc). We follow the default setups in MSTCN [21]
and ASFormer [82] using their released source codes. For
MSTCN, we use four stages and each stage contains ten
dilated convolution layers. For the methods with the APP
module, we add the progress regression branch at the end
of each stage. For ASFormer, we use one encoder and three
decoders, and each encoder/decoder contains nine blocks.
For the methods with APP, we add the progress regression
branch at the end of each encoder and decoder. In all ex-
periments, we train the model using Adam optimizer with
a learning rate 0.0005. We train the MSTCN models for 50
epochs and the ASFormer models for 120 epochs.

5.2. Experiment Results

Online Action Segmentation. Table 1 and Table 2 show
the results of using MSTCN and ASFormer, respectively,
as the base models. We begin by using the base model for
training and testing an offline action segmentation model,



Method Inference
GTEA EgoProceL EgoPER

Acc Edit F1@{0.1,0.25,0.5} Acc Edit F1@{0.1,0.25,0.5} Acc Edit F1@{0.1,0.25,0.5}
Base Offline 83.4 84.6 89.7 88.8 78.9 69.5 59.8 63.0 59.7 48.8 81.8 88.8 90.4 89.2 79.9
Base Online 36.2 48.2 52.5 44.4 28.3 13.2 17.6 13.3 9.8 5.4 19.8 24.3 25.7 16.2 8.8
CAS Online 77.2 73.3 79.6 77.1 65.0 64.8 48.1 49.8 45.0 35.4 70.3 60.6 66.1 62.3 44.7

CAS+APP Online 77.3 74.0 79.9 77.3 65.4 66.7 50.7 51.0 47.1 36.1 70.6 61.2 67.9 63.6 46.9
CAS+APP+TG Online 77.0 74.1 80.2 77.5 66.1 68.5 52.1 51.6 48.9 36.8 71.7 62.4 68.8 65.9 48.6

Table 2. Performance on three datasets, using ASFormer as the base model.

Ordinal Regression Linear Regression Ours

Figure 6. Comparison of different model designs for action progress pre-
diction (APP) on GTEA (top), EgoProceL (middle) and EgoPER (bottom).

which sets the upper bound for online models. Then we
employ the offline-trained base model for online inference.
More specifically, every time a new frame arrives, we input
all history frames into the model to make predictions at the
current frame. The results reveal a huge gap between online
and offline inference, e.g., Acc drops from 69.5% to 13.2%
on EgoProceL and from 81.8% to 19.8% on EgoPER for the
ASFormer base and similarly for MSTCN base. This under-
scores the significance of and the need for a well designed
online action segmentation model.

To bridge this gap, we first use our Causal Action Seg-
mentation (CAS) models. These models keep consistency
during both training and inference, ensuring that no future
frames are utilized. The results demonstrate a remarkable
improvement compared to performing online inference us-
ing an offline-trained base model. For example, the F1@0.5
improves from 8.8% to 33.0% on EgoProceL and from
11.9% to 39.4% on EgoPER for the MSTCN base (sim-
ilarly for ASFormer base). Next, we investigate the im-
pact of our Action Progress Prediction (APP) and leverag-
ing our transcript-based Task Graph (TG) for online action
segmentation. APP consistently improves the performance
in all metrics on three datasets, e.g., improves the F1@0.5
by about 4% on both EgoProceL and EgoPER in Table 1.
Although on GTEA, the frame-wise accuracy slightly de-
creases when incorporating the task graph, we noted im-

provement in edit similarity and F1 scores. These met-
rics are based on the predicted segments and penalize over-
segmentation, which suggest that leveraging our estimated
task graph reduces oversegmentation, resulting in smoother
and procedure-consistent online predictions. Overall, using
our framework brings the online segmentation performance
much closer to the offline segmentation.

Ghoddoosian et al. [26] introduced an Online-Offline
Discrepancy Loss (OODL) for weakly-supervised online
action segmentation. OODL runs online and offline in-
ference separately and uses the offline results to supervise
the online model. Inspired by it, we simultaneously train
two models, one causal and one non-causal model, and
minimize the difference between their predictions to re-
duce the online-offline discrepancy. However, as the results
show, adding OODL does not help the performance in fully-
supervised online action segmentation, as the ground-truth
framewise label is already used during training. In fact,
adding an offline segmentation model as the teacher model
does not perform better than directly using the ground-truth.

Action-wise performance. We evaluate the action-wise
performance to investigate how APP is helpful for online
segmentation in Figure 5. Interestingly, we notice that es-
timating progress is more helpful to the actions related to
huge apperance change through the course of the action,
e.g., “cut carrot”, “peel cucumber”, etc. On the contrary,
the appearance change of actions like “pour oil in the pan”
may not be very visible in the videos, and actions like “mix
all the contents” do not have a good definition for progress,
so APP is not effective in those cases.

Performance of Action Progress Prediction Module. We
evaluate the effects of different designs for our APP model.
We compare our proposed design with two variants: 1) or-
dinal regression [9, 36, 58]; 2) linear regression without the
GRU layer. To evaluate the progress estimation, we use
three metrics: 1) MSE between the predicted progress and
ground-truth progress for each action segment; 2) E@C (er-
ror at completion), the absolute error between the predicted
progress and and ground-truth progress at the completion
moment; 3) CMD (completion moment difference), the dif-
ference between the normalized time of completion mo-
ments in predictions and ground-truth, and the completion
moment is defined as when the progress reaches its peak.
The results are shown in Figure 6. We notice that Ordinal



Dataset Method Acc Edit F1@{0.1,0.25,0.5}

GTEA transcript 74.3 69.2 77.1 74.1 59.7
learnable 74.5 69.3 77.2 74.3 60.2

EgoProceL transcript 67.8 48.8 51.5 46.0 35.7
learnable 68.0 48.9 51.4 45.5 34.8

EgoPER
transcript 70.2 60.7 65.4 61.2 46.3
manual 70.4 61.0 65.8 61.3 46.5

learnable 70.6 61.4 67.1 62.3 47.1
Table 3. Performance of different choices of building the task graph.

Regression is not performing well for modeling progress,
leading to high errors in progress estimation and degrading
the action segmentation performance. Compared with Lin-
ear Regression without the GRU layer, our choice performs
better in both progress prediction and online action segmen-
tation due to smoother predictions.
Ablation Studies on the Task Graph. In Table 3, we com-
pare different ways of obtaining the task graph. On GTEA
and EgoProceL, we compare transcript-based task graph
with learnable task graph, discussed in Sec. 4.4. Since we
have manually built task graphs on EgoPER, we addition-
ally evaluate the performance of using manually designed
task graphs. Overall, the learnable task graph performs bet-
ter. On EgoPER, the manually designed task graph per-
forms slightly better than the transcript-based task graph.
The slight gap indicates that our transcript-based task graph
can already well capture the dependency in procedural ac-
tivities, and serve as a good proxy when the manual task
graph is not available. Besides, the learnable task graph, ini-
tialized from the transcript-based or manual graph, is able
to further improve the performance on GTEA and EgoPER,
showing that the model is able to learn a probabilistic graph
more specific to the videos through training. We notice that
the learnable task graph does not yield improvements on
EgoProceL. This could be attributed to the substantial varia-
tion in procedures within this dataset. The model might face
challenges in learning a suitable probabilistic graph given
the extensive diversity observed in the training videos.
Offline Action Segmentation. While we introduced the
APP and TG for online action segmentation, we also in-
vestigated their impacts in the context of offline action seg-
mentation in Table 4. While APP and TG can enhance the
segmentation results in some cases, the improvement is less
significant compared with their impacts in online scenarios.
This is because the offline model is able to consider the fu-
ture frames to correct the prediction errors without the need
of modeling the action progress or using task graph. See the
supplementary materials for results on other datasets.
Qualitative Results. Figure 7 visualizes the predictions by
various models on two videos from EgoPER. The first one
from the task “making oatmeal” uses MSTCN as the back-
bone while the second one from the task “making tea” uses
ASFormer. Notice that directly applying the offline trained
model to the online inference setting causes a huge perfor-
mance drop due to the discrepancy between training and in-

Groundtruth
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Measure water
Pour water to bowl

Put bowl in microwave
Microwave for X seconds
Remove bowl from  microwave

Add raisins
Stir using spoon
Put bananas

Sprinkle cinnamon
Drizzle honey

MSTCN online

MSTCN CAS

CAS+APP

0 500 1000 1500 2000
0

1
progress

CAS+APP+TG

Groundtruth

Measure water
Transfer water to  kettle
Place tea bag in mug
Check water temperature

Pour water from kettle into mug
Steep tea bag for 3 minutes
Put tea bag into trash can

Add honey to mug
Stir using spoon
Hold the cup

ASFormer online

ASFormer CAS

CAS+APP

0 250 500 750 1000 1250 1500 1750
0

1
progress

CAS+APP+TG

Figure 7. Visualization on the online predictions and progress estimation.

Method Acc Edit F1@{0.1,0.25,0.5}
MSTCN 69.2 56.9 58.9 55.8 45.9

MSTCN+APP 70.3 56.6 60.6 56.9 46.8
MSTCN+APP+TG 71.1 60.4 63.3 59.3 46.1

Table 4. Offline action segmentation performance on EgoProceL.

ference. Using the proposed CAS model significantly mit-
igates this issue, yet, we still see oversegmentation in pre-
dictions. By adding the APP module, the model learns to
estimate the action progress and reduces oversegmentation.
However, CAS+APP may still make erroneous predictions
that are inconsistent with the task graph. In the first exam-
ple, CAS+APP fails to correctly detect the step “measure
water” and “pour water to bowl” before “put bowl in mi-
crowave”. In the second example, CAS+APP predicts “put
tea bag into trash can” before “steep tea bag for 3 minutes”.
By incorporating the task graph, the model leverages high-
level knowledge and correctly recognizes these steps.

6. Conclusions
We proposed a progress-aware online action segmentation
framework. We bridge the gap between offline training and
online inference via causal action segmentation model, and
improve online segmentation by estimating the progress of
online actions via APP module. Further, we leverage the
high-level procedural knowledge by learning task graphs
from training videos themselves. Our framework reduces
prediction uncertainty and oversegmentation, and achieves
notable improvements on three egocentric video datasets.
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