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Abstract. Training a temporal action segmentation (TAS) model on
long and untrimmed videos requires gathering framewise video annota-
tions, which is very costly. We propose a two-stage active learning frame-
work to efficiently learn a TAS model using only a small amount of video
annotations. Our framework consists of three components that work to-
gether in each active learning iteration. 1) Using current labeled frames,
we learn a TAS model and action prototypes using a novel contrastive
learning method. Leveraging prototypes not only enhances the model
performance, but also increases the computational efficiency of both
video and frame selection for labeling, which are the next components
of our framework. 2) Using the currently learned TAS model and action
prototypes, we select informative unlabeled videos for annotation. To do
so, we find unlabeled videos that have low alignment scores to learned
action prototype sequences in labeled videos. 3) To annotate a small
subset of informative frames in each selected unlabeled video, we pro-
pose a video-aligned summary selection method and an efficient greedy
search algorithm. By evaluation on four benchmark datasets (50Salads,
GTEA, Breakfast, CrossTask), we show that our method significantly re-
duces the annotation costs, while consistently surpassing baselines over
active learning iterations. Our method achieves comparable or better
performance than other weakly supervised methods while using a small
amount of labeled frames. We further extend our framework to a semi-
supervised active learning setting. To the best of our knowledge, this is
the first work studying active learning for TAS.

Keywords: Action segmentation · Video alignment · Active learning

1 Introduction

Automatic understanding of human activities in long and uncurated videos is
crucial for many applications, such as healthcare, robotics, security and assistive
technologies [22, 60, 100]. This has motivated many recent works on temporal
action segmentation (TAS) [17,33,46,47,65,75,100,103], whose goal is to predict a
label for each frame, hence partition a long video into non-overlapping segments.

Learning a TAS model, in principle, requires dense framewise annotations
for many videos [17]. This is extremely costly given that untrimmed videos are
often long, hence, annotators need to watch hours or days of video footage and
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Fig. 1: Visualization of ours (left) and split-random baseline (right) model performance
improvement by iteratively labeling more frames. This example corresponds to video
‘rgb-04-1’ in 50Salads. Note split-random baseline missed at least one large segment
(blue one in middle right).

specify boundaries of different actions in every video. To reduce the annotation
cost for learning, some of the existing works on TAS have focused on semi-
supervised learning by using a small number of fully-annotated videos and many
unannotated videos [18, 104, 117]. Yet, they still require fully labeling multiple
long videos and it is not clear how to select the best videos for annotation and
training. On the other hand, weakly-supervised approaches use weak annotations
(e.g., ordered or unordered list of actions) in all training videos [13, 14, 21, 44,
55,63,73,74,89,90,99,106,123]. However, the performance of both categories of
methods is significantly lower than the fully-supervised techniques. While time-
stamp annotation [8, 50, 67, 69, 85] can achieve performance close to the fully-
supervised setting. However, while a small number of annotated frames will be
provided for training, they have been carefully selected in a very costly process
of annotators watching every entire video and selecting frames that correspond
to distinct actions in each video. In fact, a key limitation of such methods is the
lack of effective video and frame selection for labeling to significantly reduce the
annotation time and guide the labeling process efficiently.

Another approach to reduce the annotation cost is the conventional active
learning (AL) setting, which iteratively selects unlabeled samples for assigning
labels based on some utility functions [88]. However, almost all existing AL works
have focused on sample classification, where each data sample has a single label.
This is different from TAS, where each video sample has multiple action labels
and frame labels depend on each other. Therefore, we need to address both video
selection and frame selection for labeling. Recently, [86, 87] proposed a hybrid
active learning approach for action detection, which is to specify spatiotemporal
regions of an action in a video. Despite its success, their models only handle
trimmed video clips, where each clip contains only one action and lasts a few
seconds. On the other hand, in TAS, videos are long and have multiple actions,
thus leveraging action temporal dependencies is crucial. Also videos often contain
background (irrelevant and uninteresting actions not present in the pre-specified
dictionary of actions), which makes learning challenging.

Paper Contributions. We develop a two-stage active learning framework to
learn a temporal action segmentation (TAS) model in long and untrimmed videos
using small annotations and with relatively small performance drop compared
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to the fully-supervised TAS. To the best of our knowledge this is the first work
addressing active learning for TAS. In our two-stage framework, we first select
informative unlabeled videos (inter-video selection) followed by selecting and
annotating informative frames within them (intra-video selection). For inter-
video selection, we develop a method based on dynamic time warping [27] to
select unlabeled videos with diverse and distinct action orderings with respect
to the action orderings in the labeled videos. This leads to increased diversity
among labeled videos and subsequently to more efficient TAS learning compared
to a random video selection strategy. On the other hand, instead of labeling the
entire selected videos, we propose a new alignment-based video summarization
method to select and annotate a sequence of a small number of frames from
each selected video that aligns well with the video, hence, can capture distinct
actions. We repeat this iterative annotation process until the total budget or
target performance met. This strategy not only improves the AL performance
compared to other frame selection criteria (see Fig. 1), but also significantly
reduces annotation effort. Our method also consists of action prototypes that
will be learned in conjunction with TAS using a novel regularized contrastive
action prototype loss. Action prototypes allow us to perform alignment more
efficiently to perform video selection. By extensive evaluation on four benchmark
datasets (GTEA [34], Breakfast [54], CrossTask [135], 50Salads [107]), we show
that our framework significantly boosts performance over baselines. Moreover, we
expand our framework to include a semi-supervised AL setting, and we achieve
comparable or better performance than other weakly supervised methods with
only a minimal number of labeled frames.

2 Related Works

Temporal Action Segmentation. Fully-supervised TAS methods have used
dense framewise annotations for training, including recurrent networks [20, 46,
89, 102], temporal convolution nets [24, 33, 40, 43, 58, 59, 61, 65, 66, 84, 103, 105,
113, 114, 130], graph neural networks [46, 128], transformers [4, 6, 23, 25, 70, 94,
109,110,115,125,134], combination of transformers and CNNs [75] and diffusion
models [68].

Multi-stage models [4, 33, 65, 75, 75, 84, 100, 102, 113, 119, 125] have been par-
ticularly effective because of their ability to capture and refine temporal con-
text and reduce oversegmentation [17]. Notable examples include MS-TCN [33]
and its variants, employing temporal convolution networks, and ASFormer [125],
which use Transformers [111]. Semi-supervised approaches provide framewise la-
bels for a subset of videos [18, 104, 117], while weakly-supervised methods rely
weak annotation, examples are action set or transcript methods [13, 14, 21, 44,
55, 63, 73, 74, 89, 90, 99, 106, 123], single-frame labels [8, 50, 67, 69, 85], activity
labels [18,19], and from other sources (e.g., narrations, subtitles) [37,97].

To further reduce reliance on annotation, unsupervised models [1, 5, 26, 29,
31,41,56,93,95,95,98,101,112,118] often use videos from same activity at a time
or use self-supervision from large-scale datasets (e.g. Howto100M [81]), treating
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TAS as a downstream task. We argue that reducing annotation effort for TAS
is important, however, instead of completely removing it, we propose an active
learning framework to efficiently label only a subset of frames for a small number
of videos to train TAS.

Sequence Alignment. Dynamic Time Warping (DTW) [82,92] and its variants,
such as dropDTW [27], assume ordered matching between sequences and have
achieved success in various applications [10,13,14,16,16,27–29,42,101,101,124,
132]. To handle alignment of sequences that do not follow ordered matchings,
other methods have been proposed, such as (restricted) edit distance [38, 51,
62, 99], order-preserving Wasserstein distance [108], temporal cycle consistency
[30]. Our video-aligned summary selection method for intra-video selection is an
extension of DTW for simultaneous summary selection and alignment.

Active Learning. The goal of active learning is to minimize the amount of
data annotation by iteratively selecting samples, labeling them and training a
model [88]. While query-based [3,77,79,133] and stream-based [32,53,83] meth-
ods have been proposed, the current mainstream favors pool-based frameworks.
These pool-based algorithms select a subset of samples from unlabeled data for
annotation, mainly guided by two key criteria: uncertainty [7, 36, 39, 45, 49, 71,
71, 72, 76, 116, 126, 127, 131] and diversity [2, 78, 96]. Uncertainty-based methods
select difficult samples about whose label the current model is most uncertain.
Diversity-based methods ensure the chosen samples for labeling capture the dis-
tribution of the original data. Recent efforts in active learning have been ex-
panded into video domain [48, 52, 64, 86, 87, 120,136] and different settings, e.g.,
active fine-tuning [122] active self-supervised learning [9], active training [57]
and active federated learning [11].
In the paper, we focus on untrimmed videos and explore two-stage active learning
for action segmentation by capturing temporal diversity at various levels.

3 Active Temporal Action Segmentation Learning

Problem Setting. Assume we have a set of N unlabeled videos with A action
classes, including background (i.e., irrelevant actions outside the pre-defined list
of main action classes). For more efficient processing, we divide each video into
clips, where each clip consists of a small number (e.g., 10 or 32) of consecutive
frames. Each video i has Ti clips and consists of pre-extracted clip features,
Xi =

[
xi1,xi2, . . . ,xiTi

]
, where xij denotes the feature of clip j in video i. We

denote the set of all videos by X = {X1,X2, . . . ,XN}.
Our two-stage active learning framework for TAS consists of c iterations,

where in each iteration, we select m ≪ N unlabeled videos and partially annotate
ρ ≪ 1 fraction of their clips. We denote the set of labeled video clips in iteration
t by X (t)

l and the set of remaining unlabeled video clips by X (t)
u . It is important

to note that our framework can work with any existing TAS architecture.

Overview of Proposed Framework. Our two-stage active TAS learning con-
sists of the following components (see Fig. 2):
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Fig. 2: Overview of our two-stage AL framework. Left: we first train a TAS model and
construct action prototype sequences from partially labeled videos. Middle: Informative
unlabeled videos are identified through our inter-video selection method (VPA). Right:
We use intra-video selection method (VAS) to select summaries from selected unlabeled
videos for annotation. We label selected clips by labeling middle frame of each clip.
New partially labeled videos are added to the labeled pool for the next iteration.

— Using labeled clips X (t)
l at iteration t, we train a TAS network and learn

action prototypes. More specifically, for each action a in labeled video clips,
we learn a prototype pa. We use the learned TAS model and prototypes to
construct a sequence of action prototypes for each partially labeled video. We
use the prototype sequences to efficiently select informative unlabeled videos for
annotation via our inter-video selection module. The use of prototype sequences
instead of entire videos significantly reduces the complexity of video selection.
— Given the trained TAS model at iteration t, we select an informative subset
of unlabeled videos from X (t)

u for partial annotation. To do so, we use a method
based on video-prototype sequence alignment (VPA) to select the most useful
subset of unlabeled videos. Our key idea is that an unlabeled video whose sequence
of actions is sufficiently different from the sequences of actions in partially labeled
videos, is expected to improve the TAS model the most, once annotated and used
for training. Therefore, we use the prototypes learned by our method to construct
action prototype sequences for labeled videos and measure the alignment cost
between each unlabeled video and each training prototype sequence. We will
select the unlabeled videos with the highest alignment cost for annotation.
— For each selected unlabeled video, we find an informative subset of clips to
annotate and to build the labeled clips for the next iteration X (t+1)

l . To do so,
we develop an alignment-based video summarization framework, which finds the
summary of a video that best sequentially aligns with the video. We refer to our
method as video-aligned summarization (VAS). This is different from existing
summarization methods [91, 129] that do not take into account the sequential
nature of the summary with respect to the video. Given the NP-hardness of
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the problem, we propose an efficient greedy algorithm to find the subset of
informative clips. We use the label of the middle frame in each selected clip as
the clip label and obtain X (t+1)

l by adding the new annotated clips to X (t)
l .

We next discuss each component in more details.

3.1 Learning Action Prototypes and TAS Model

Using annotated video clips at iteration t of active learning, we jointly learn the
parameters of a TAS model and action prototypes {pa}, representing all seen
action classes. These prototypes not only facilitate TAS learning, but also allow
constructing compact sequences, which we will use later for efficiently selecting
unlabeled videos for annotation.

Regularized Contrastive Learning of Action Prototypes. Our action pro-
totypes are learnable parameters that lie in the embedding space of TAS, each
representing an action. Prototypes are learned with features z obtained from the
model before the last layer. To learn them, we propose a loss, which we refer to
as regularized contrastive action prototype loss, Lreg-cont, which consists of three
terms,

Lreg-cont = Lcont + Lµ + Lσ. (1)

Here, Lcont is a contrastive loss [15] which enforces that each prototype pa must
be close to labeled clips belonging to action a (positive clips, Pa) and far from
labeled clips of other actions (negative clips, Na),

Lcont =
∑
a

∑
j∈Pa

− log
( f(pa, zj)

f(pa, zj) +
∑

j′∈Na
f(pa, zj′)

)
. (2)

In the above, f is the exponential cosine similarity function with a tempera-
ture parameter, f(x, y) = exp(cos(x, y)/γ). The contrastive loss enforces that
features from the same action to be mapped closely to the associated prototype
hence to each other, while having sufficient separation to features of different ac-
tions. This leads to obtaining more discriminative action features. Beyond Lcont,
since active learning adds labeled clips incrementally, the TAS model may en-
counter different prototypes at various active learning iterations. This can lead
to overfitting for some prototypes while underfitting for others. Therefore, we
enforce that different prototypes maintain approximately equal levels of separa-
tion throughout the learning process. This leads to the following regularization
losses

Lµ =
1

M

∑
a

∑
a′ ̸=a

cos (pa,pa′) , Lσ =
1

M

∑
a

∑
a′ ̸=a

(
cos(pa,pa′)− Lµ

)2
, (3)

where M = A(A − 1) is the total number of prototype pairs. Experimentally,
we observed that using these two regularization losses stabilizes the learning
of prototypes and improves the performance. TAS Learning. To learn the
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parameters of the TAS model, we use the standard cross-entropy and smoothing
losses [33,125] and our proposed regularized contrastive action prototype loss,

L = Lcross-entropy + αLsmooth + βLreg-cont, (4)

where we set α = 0.15 and β = 0.1 in our experiments.

3.2 Inter-Video Selection: Selecting from Unlabeled Videos

Given the learned action prototypes and TAS model using labeled clips X (t)
l at

iteration t, we then select a small number of most informative unlabeled videos
from X (t)

u for partial annotation. Our key idea is that the most difficult unlabeled
videos for the current TAS model are the ones that have a different sequence
of actions than the seen action sequences in the partially labeled videos. This
comes from the fact that TAS learns to capture long-range action dependencies
from training videos, therefore, unlabeled videos with different action orderings
pose a challenge for the learned TAS model.

However, we do not have ground-truth sequence of actions in unlabeled
videos. To address this challenge, we take each partially labeled video i, ob-
tain its sequence of actions (i1, i2, . . .) from clip labels (see Fig. 2) and represent
the video with the sequence of prototypes P i = (pi1 ,pi2 , . . . , ). We treat con-
secutive repetitions of the same action as one action and skip the background
class/prototype. Our goal is to align each unlabeled video Xj with each P i

and select videos with the lowest alignment scores, since they represent differ-
ent sequences of actions. To do so, we utilize drop-DTW [27], which aligns two
sequences by allowing many to many matchings while allowing some elements
from each sequence to stay unmatched (hence be dropped). Specifically, we adopt
drop-DTW to the one-to-many matching, since several consecutive clips in Xj

often correspond to the same action, hence must be matched with the same pro-
totype (however, one clip cannot belong to more than one prototypes/actions)
while background clips in Xj should be dropped.

For an unlabeled video Xj , we measure its smallest drop-DTW cost to pro-
totype sequences of partially labeled videos,

sj = min
i

drop-DTW(P i,Xj). (5)

Once we compute sj for all unlabeled videos, we select m videos with the highest
alignment cost, denoted by Λ(t), since they represent the videos whose sequence
of actions will be most dissimilar to all seen action sequences in labeled videos.
We refer to our inter-video selection method as Video-Prototype sequence Align-
ment (VPA). Notice that using P i instead of Xi significantly reduces the align-
ment computational cost since the number of action segments in a video is often
much smaller than the video length, i.e., |P i| ≪ |Xi|. To compute the drop-
DTW in (5), following [42], we measure the distance between each clip of Xj

and each prototype in P i via − log(softmax1(P
T
i Xj/γ))

1.
1 Applying softmax operator over the first tensor dimension.
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Algorithm 1: Video-Aligned summarization (VAS)
Input: Video clips X = [x1, . . . ,xn], subset size K

1 Initialize subset S(0) = ∅
2 for j = 0, . . . ,K − 1 do
3 xj+1 = argminx∈X SVA(X,x ∪ S(j)) (via Alg 2)
4 S(j+1) = sort(xj+1 ∪ S(j))

5 S ← S(K)

Output: Summary S

Algorithm 2: Summary-Video Alignment (SVA)
Input: Video clips X = [x1, . . . ,xn], Summary S = [s1, . . . , sK ]

1 Initialize cumulative cost matrix M ∈ R(K+1)×(n+1) with
M [0, :] =∞,M [:, 0] =∞, M [0, 0] = 0

2 Compute pairwise cosine dissimilarity cost matrix D between X and S
3 for i = 0, . . . ,K do
4 for j = 0, . . . , n do
5 M [i+ 1, j + 1] = D[i, j] + min(M [i+ 1, j],M [i, j])

6 Set alignment cost as SVA(X,S) = M [K,n]
Result: M, SVA(X,S)

3.3 Intra-Video Selection: Selecting Clips for Annotation

The next step of our framework involves selecting a small subset of informative
clips in each video in Λ(t) for annotation. To achieve this, we cast the problem as
finding a summary Si of each video i ∈ Λ(t), that best sequentially aligns with
the video. In other words, if an entry in the summary Si is matched with with
clip j in the video Xi, the next entry in the summary must match with a clip
after j. This ensures that the summary preserves the sequential structure of the
video, hence captures its action ordering. Therefore, we propose to solve

min
Si⊆Xi

DTW(Si,Xi), s. t. |Si| ≤ ρ|Xi|, (6)

which searches for a summary whose size is ρ fraction of the video and has the
minimum dynamic time warping (DTW) cost [82, 92] with the video. Here, we
modify DTW to use a one-to-many matching (instead of many to many) so
that each clip in Xi can be assigned to at most one representative in Si, while
allowing each representative clip to encode multiple temporally close clips that
have the same action label.

We expect that such a video-aligned summarization (VAS) method will select
clips that correspond to different actions in the video. Notice that it is possible
that the summary may not capture all actions in the video, hence annotations
of the videos at a given active learning iteration may not contain clips from all
actions. Thus, prototypes will only be learned for actions that have labeled video
clips. However, given that inter-video selection will find videos with different
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sequences of actions, the next iteration with a high likelihood will find and
annotate videos with missing actions.

Notice that solving (6) is challenging and computationally complex due to the
combinatorial search over all possible subsets of clips from a videos. Motivated
by research on submodular function maximization [121], we propose a greedy
algorithm which iteratively builds the subset Si. More specifically, in the first
iteration of the greedy approach, we select a clip from Xi that has the lowest
total cost for representing the entire video. In the next iteration, we choose
another clip from Xi such that the two clips (when sorted by their indices)
provide the best DTW alignment with the entire video and so on. Algorithm
1 shows the steps of our proposed greedy algorithm. Notice that to perform
greedy selection, we need to align the video and the current summary set at
each iteration of the greedy algorithm, which we perform by running one-to-
many dynamic time warping using Algorithm 2. More details about complexity
of our method are provided in the supplementary materials. Finally, we use the
label of the middle frame of each selected clip as the clip label.

4 Experiments

4.1 Datasets

We use the following four datasets for evaluations. 1) 50Salads [107] consists
of 50 videos, with 17 actions that depict individuals making salads. On average,
each video is roughly 6.4 minutes long. 2) GTEA [35] contains 28 videos with 11
kitchen-related action classes performed by 4 subjects. Each video lasts around
1.5 minutes. 3) Breakfast [54] comprises a total of 1,712 videos, depicting
activities associated with breakfast preparation. There are a total of 48 distinct
actions, with an average of 6 action instances in each video. 4) CrossTask [135]
consists of 2,750 YouTube videos, spanning 18 primary tasks and totaling 212
hours of video content. The duration of a video is around 6 minutes.

We have chosen a wide range of datasets to show the effectiveness of our
method. The first three datasets are standard TAS benchmarks, where at most
20% of video frames are background. In contrast, CrossTask is collected from
the Internet, and around 72% of video frames are background.

4.2 Implementation Details

For all datasets, we extracted video frame features by using the I3D [12] model,
and obtained clip features by average pooling 32 consecutive frames [80, 101];
except in GTEA, we use 10 frames per clip since videos are much shorter com-
pared to other datasets. For evaluation, similar to prior works [33, 101, 125], we
upsample results and report: accuracy, segmental edit distance (edit), segmental
f1 score at overlapping threshold 10%, 25%, 50%, denoted by f1@10, 25, 50. For
modeling, We use ASFormer [125] as our backbone, with a lighter design. More
implementation details are provided in the supplementary materials.
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50Salads GTEA
method budget acc edit f1@{10,25,50} budget acc edit f1@{10,25,50}

split-rand [87] 0.16% 49.0 39.8 48.0 42.0 24.7 0.5% 45.2 54.1 56.1 47.9 25.5
split-entropy [87] 0.16% 45.8 35.2 39.1 34.6 16.2 0.5% 45.1 56.9 58.1 47.1 25.3
equidistant [87] 0.16% 51.0 36.5 44.8 38.6 27.8 0.5% 42.7 56.3 55.3 45.1 20.7
coreset [122] 0.16% 38.4 26.1 29.1 24.9 13.8 0.5% 43.1 50.3 50.7 41.7 23.4

ours 0.16% 57.8 45.0 55.1 49.1 32.9 0.5% 47.6 57.0 59.9 48.7 27.3
full 100% 82.4 73.2 82.8 80.3 67.4 100% 73.4 82.5 88.6 84.4 69.2

Breakfast CrossTask
method budget acc edit f1@{10,25,50} budget acc edit f1@{10,25,50}

split-rand [87] 0.16% 61.8 56.9 61.1 55.1 39.4 0.16% 73.4 33.2 29.7 22.7 11.2
split-entropy [87] 0.16% 61.8 55.8 61.9 56.8 41.0 0.16% 73.1 34.3 30.0 23.2 11.0
equidistant [87] 0.16% 58.5 52.0 55.6 49.2 34.0 0.16% 71.5 32.5 28.7 20.9 9.8
coreset [122] 0.16% 61.0 56.0 60.6 55.9 40.5 0.16% 73.0 32.3 27.8 22.2 10.9

ours 0.16% 63.5 58.6 62.8 58.1 43.5 0.16% 73.9 35.5 30.4 24.8 12.4
full 100% 76.4 73.2 75.6 72.0 57.9 100% 79.3 46.0 48.7 43.6 27.3

Table 1: Comparison of our proposed method with other baselines on four datasets.

Active Learning settings. During each active learning iteration, we select
m = 5% of videos in the training set, and select ρ = 25% clips of each selected
video. We label 1 frame per selected clip, resulting in a total frame percentage
of AL iterations × m × ρ/clip-size. We randomly select videos in the first iter-
ation when we initialize the model, and then use our proposed method for all
future selections. We repeat iterations until the total budget is met or the target
performance level is reached. Videos will not be repeatedly selected for labeling,
and AL iterations will be stopped once all videos are selected.

4.3 Baseline Methods

Our work is the first to explore active learning in TAS, so there is a lack of
baselines. Thus, we design baselines from recent related research. For intra-video
selection, we use the following baselines: equidistant, split-random, split-entropy
and coreset [96]. The first three baselines are adopted from recent research in
active video action detection [87] while the last one was used in active fine-tuning
[122]. Note we cannot use [87,122] directly as [87] is for trimmed videos and [122]
is for fine tuning a pre-trained model. To be more specific, the equidistant method
selects clips by skipping a fixed interval. In the case of split-random and split-
entropy, we first split each video i into equal Ti/4 intervals and then select
a clip from each interval either randomly or based on the highest entropy [39].
Following [39], we enable drop-out and repeat inferences for 50 times to calculate
the entropy of each clip. The Coreset method [96], treats clip selection as a K-
center problem, which is solved using a naive greedy algorithm. All baselines use
random selection for inter-video selection, and use the same TAS model as ours.
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Fig. 3: (a) Continue AL iteration up to total 0.47% annotated frames, each horizon-
tal line represents the percentage of fully-supervised performance. (b) Continue AL
iteration with pseudo labels up to total 0.39% annotated frames, each horizontal line
represents the percentage of fully-supervised performance.

4.4 Main Results

Comparison with baselines. Tab. 1 shows comparison of our method with
four baselines on 50Salads, GTEA, Breakfast and CrossTask datasets. We fix
the budget by running all methods for 4 active learning iterations, equating to
total 0.16% frame budget (0.5% for GTEA). We also report the upper bound
performance (full), where we use the annotations of all clips during training.

Notice on all datasets, the first three baselines have higher performance than
coreset. We argue this is mainly because the first three baselines enforce a tem-
poral separation for labeling, indicating that diverse temporal information is
crucial for TAS learning. Secondly, we noticed coreset performs relatively better
than equidistant on Breakfast and CrossTask, this is partly due to CrossTask
and Breakfast being much larger than 50Salads and GTEA, and the lack of
intra-video temporal information is compensated by labeling more videos.

Overall, our method performs the best across all these datasets, showing
the effectiveness of our approach. More specifically, we improve f1@50 by 8.2%,
1.8%, 4.1% and 1.2% on 50Salads, GTEA, Breakfast and CrossTask, respectively.
Moreover, by labeling only 0.16% frames (0.5% for GTEA), we achieve 57.8%,
69.1%, 80.1%, and 77.2% of fully-supervised performance on edit distance.
Qualitative comparison. Our qualitative analysis, as shown in Fig. 1, com-
pares our method with the split-random baseline across four active learning
iterations. A significant difference is evident when examining the segmentation
quality of our model, especially when increasing the budget from 0.12% to 0.16%.
Compared to the initially trained model and the split-random approach, our
model’s segmentation quality is substantially better, closely aligning with the
ground truth and successfully segmenting all major components. In contrast,
the split-random approach fails to identify at least one large segment (the blue
one in the middle right), highlighting the superiority of our approach.
Towards Full-supervision Performance. In Fig. 3a, we continue active learn-
ing iterations aiming to achieve full-supervision performance on Breakfast. Our
method surpasses all baselines over iterations. In particular, with 0.23% frames
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method budget acc edit f1@{10,25,50}
D-TSTAS (Timestamp) [69] 0.29% 65.7 75.8 71.3 69.3 50.7

EM-gen (SkipTag) [85] 0.29% 64.1 59.9 n/a 57.3 45.2
Ours 0.23% 73.4 71.1 74.4 70.1 54.3

Table 2: Comparison with timestamp and SkipTag supervision methods on Breakfast.

Breakfast MoF IoU IoD CrossTask MoF IoU IoD
TASL [73] 47.8 35.2 46.1 TASL [73] 40.7 14.5 25.1
POC [74] 45.7 38.3 - POC [74] 42.8 15.6 -

MuCon [106] 48.5 40.9 54 MuCon [106] - - -
Ours 63.5 39.2 49.6 Ours 73.9 23.7 30.1

Table 3: Comparison with action set and transcript supervision methods.

labeled, our method achieves over 90% of the full-supervision performance in
terms of f1@10, while other baselines require 0.27% labeled frames to achieve
the same level of performance. Moreover, by labeling 0.35% and 0.47% frames,
we attain 95% and 100% of the full-supervision performance, demonstrating the
efficiency and effectiveness of our active learning method.
AL in Semi-supervised Settings. One might wonder if trained TAS model
can generate pseudo-labels to assist learning in future AL iterations, and we
show our method can extend to semi-supervised learning in Fig. 3b. Starting
from the 5th iteration, in addition to newly annotated videos, we select 1.25%
of videos with the lowest alignment costs and pseudo-label them. We add these
pseudo labeled videos to labeled video set for future training. Comparison be-
tween learning "w/ pseudo-label" and standard "w/o pseudo-label" setting (or-
ange v.s. blue) shows performance is improved with additional pseudo-labels.
More specifically, under 0.31% labeled frames budget, learning with additional
pseudo labels achieves close to 95% of fully-supervised performance on f1@50,
while learning with labeled frames only achieves 90% of fully-supervised per-
formance on f1@50. We further notice after 0.35% frames budget, our standard
method outperforms semi-supervised one, likely due to noises introduced by
pseudo-labels over iterations, resulting in slightly lower performance.

4.5 Comparison with Weakly Supervised Methods

Comparison with timestamp supervision methods. Timestamp supervi-
sion [8,50,67,69,85] methods reduce annotation cost by labeling one frame from
each action in every video. Examples are D-TSTAS [69] and EM-Gen [85]. Ad-
ditionally, EM-Gen [85] proposed a new form of supervision named SkipTag, al-
lowing an annotator to randomly label K frames anywhere in the video, where K
is the average number of action segments. Although SkipTag reduces the restric-
tions in timestamp supervision, it still requires all videos to be labeled. Unlike
these methods, we do not require watching every entire video or ensuring each
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Fig. 4: (a) Ablation of our intra-video selection method (VAS) under 0.04%, 0.08%,
0.12% and 0.16% frame budget on 50Salads. (b) Ablation studies of our inter-video se-
lection method (VPA) under 0.04%, 0.08%, 0.12% and 0.16% frame budget on 50Salads.

selected frame represents a different action segment, significantly simplifying the
annotation process while striving for high efficiency and minimal budget.

In Tab. 2, we compare our approach against both D-TSTAS (Timestamp)
and EM-Gen (SkipTag) on Breakfast. We adjust ρ so we label K frames per
selected video while keeping m = 5% for inter-video selection. Note that our
approach annotates only a subset of videos during each iteration, while D-TSTAS
and EM-Gen annotate all videos. Consequently, the annotation budget of our
method is less than that of D-TSTAS and EM-Gen, and aligns with them only
when all videos have been chosen for labeling. Breakfast contains roughly 3.6M
frames [67] and K=6 [85], which leads to (1712×6)/3.6M frames ≈ 0.29% budget
for D-TSTAS and EM-Gen. For comparison with EM-Gen and D-TSTAS, when
selecting 80% videos (0.23% frames), our method significantly outperforms both
methods, e.g., surpassing EM-Gen by 9.1% and D-TSTAS by 3.6% on f1@50.
In summary, our method performs better than both Timestamp and SkipTag
supervision methods, while using less annotation budget.
Comparison with action set and transcript supervision methods. Ac-
tion set and transcript supervision methods reduce annotation cost by learning
from a list of unordered actions or ordered actions, respectively [17]. Quantita-
tively comparing supervision costs is challenging because obtaining transcripts
or action sets typically requires an annotator to watch the entire video. No-
tably, [67] states that timestamp “does not require more time than annotating
transcripts," whereas our supervision cost is lower than timestamp.

We train our method for four AL iterations on Breakfast and CrossTask
datasets and compare with transcript methods (TASL [73], MuCon [106]) and
an action set method (POC [74]). Tab. 3 demonstrates that our method achieves
superior or comparable results while labeling only 0.16% of frames.

4.6 Ablation Studies

Action prototype learning module effectiveness. We evaluate the effec-
tiveness of our action prototype learning module in Tab. 4a and Tab. 4b. For
the first row, we use the average embedding features of each action to replace the
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Lcont Lµ Lσ acc edit f1@{10,25,50}
× × × 50.0 44.4 52.2 46.4 26.8
✓ × × 47.2 40.4 45.5 39.7 22.2
✓ ✓ × 42.0 37.8 40.2 33.6 17.8
✓ × ✓ 49.9 40.6 48.8 42.0 23.9
✓ ✓ ✓ 57.8 45.0 55.1 49.1 32.9

(a) 50Salads

Lcont Lµ Lσ acc edit f1@{10,25,50}
× × × 46.3 56.6 58.9 48.7 27.2
✓ × × 43.9 57.3 57.4 48.0 23.6
✓ ✓ × 46.5 54.9 57.9 48.6 26.4
✓ × ✓ 42.7 56.6 57.9 47.1 25.9
✓ ✓ ✓ 47.6 57.0 59.9 48.7 27.3

(b) GTEA

Table 4: Loss ablation after 4 active learning iterations, all cases use our AL method.

prototypes for selection, and only keep cross entropy loss and smoothing loss for
training. For other cases, we ablate each part in our proposed loss. We run our
method for four iterations. Due to lack of labels, using the contrastive loss Lcont
alone reduces the performance. In contrast, after adding our two regularizers
(Lµ and Lσ), the performance is significantly improved.
Intra-video selection effectiveness. Next, we use split-random to replace
our intra-video selection method (VAS), while keeping the inter-video selection
(VPA) the same. Figure 4a shows accuracy and edit distance on 50Salads. Notice
that VAS outperforms split-random in almost all cases, suggesting the effective-
ness of our VAS, creating synergies with our inter-video selection.
Inter-video selection effectiveness. Here, we replace our inter-video selec-
tion (VPA) by random selection, while keeping the intra-video selection (VAS).
As Figure 4b shows, our method starts from almost the same performance as
random (since we also use random for initialization). With more budgets, our
method performs better than random selection, suggesting that our proposed
inter-video selection (VPA) can better capture useful videos for annotation by
selecting action-wise diverse videos. Please refer to the supplementary material
for additional experiments, discussions.

5 Limitation and Future Work

Our method is efficient, but the labeled dataset grows iteratively. Future research
could explore continual active learning, maintaining a constant-size dataset by
cycling videos, potentially reducing training time.

6 Conclusions

We proposed a two-stage active learning framework for TAS, consisting of three
parts: i) Regularized action prototype module to learn discriminative prototypes
for enhanced accuracy and computational efficiency. ii) Inter-video selection to
select unlabeled videos with diverse sequence of actions. iii) Intra-video selec-
tion to identify informative clips in selected unlabeled videos for annotation.
With extensive experiments on four datasets, we showed our approach consis-
tently outperforms baselines over iterations, and achieve comparable or better
performance than other weakly-supervised methods using minimum annotation.
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