beamerthemeNU
A LaTeX/beamer theme for Northeastern University.
Available at abaisero/beamerthemeNU.A LaTeX/beamer theme for Northeastern University.
Available at abaisero/beamerthemeNU.Gridworld domains for fully and partially observable reinforcement learning.
GridVerse is highly customizable; while many components are provided out-of-the-box, it is designed such that you can create your own components programmatically, including your own objects, starting states, transition functions, reward functions, observation functions, terminating functions, etc.
Relevant Publications | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
paper | slides | poster |
|
Baisero, Daley, and Amato, “Asymmetric DQN for Partially Observable Reinforcement Learning,” in Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2022. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
paper | slides |
|
video | Baisero and Amato, “Unbiased Asymmetric Reinforcement Learning under Partial Observability,” in Proceedings of the Conference on Autonomous Agents and Multiagent Systems, 2022. |
Research code repository.
Relevant Publications | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
paper | slides | poster |
|
Baisero, Daley, and Amato, “Asymmetric DQN for Partially Observable Reinforcement Learning,” in Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2022. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
paper | slides |
|
video | Baisero and Amato, “Unbiased Asymmetric Reinforcement Learning under Partial Observability,” in Proceedings of the Conference on Autonomous Agents and Multiagent Systems, 2022. |
Research code repository.
Relevant Publications | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
paper | slides | poster |
|
Baisero and Amato, “Reconciling Rewards with Predictive State Representations,” in Proceedings of the International Joint Conference on Artificial Intelligence, 2021. |
Research code repository.
Relevant Publications | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
paper |
|
poster |
|
Baisero and Amato, “Learning Internal State Models in Partially Observable Environments,” in (Workshop) Reinforcement Learning under Partial Observability, NeurIPS Workshop, 2018. |
Gym environments for POMDPs and DecPOMDPs respectively encoded by .POMDP and .DPOMDP files.
Available at abaisero/gym-pomdps.Parsers for file formats related to reinforcement learning, including the standard .MDP, .POMDP and .DPOMDP file formats, and the custom .FSC (Finite State Controller) and .FSS (Finite State Structure) file formats.
Available at abaisero/rl-parsers.Tools for flat indexing of complicated semantic structures.
Family of classes which represent bijections between sets of
The provided classes automate (via a user-friendly interface) the conversions between values and indices.
Available at abaisero/one-to-one.